

OPMS 2018 - Exercise 5
Automated high-bay warehouse

Task 0 (Setup)

 Create a new project in Eclipse and name it “Exercise5”.

 Create a package “opms.exercise5” and create

all following classes inside this package.

IMA - RWTH Aachen University
Institute of Information Management in Mechanical Engineering IMA

Acting Head of Institute: Univ.-Prof. Dr.-Ing. Christian Hopmann
1st Deputy: apl.-Prof. Dr. habil. Ingrid Isenhardt
2nd Deputy: Dr. rer. nat. Frank Hees
Apl.-Prof. Dr. rer. Nat. Sabina Jeschke
Senior Advisor: Univ.-Prof. Dr.-Ing. em. Klaus Henning

Task 1 (Pallet)

1. Create a class Pallet. Add a variable private int serialNumber.

2. Add a constructor public Pallet(int serialNumber) which saves the given serial

number to the field serialNumber.

Hint: Use this.serialNumber = serialNumber to set the Pallet’s private field.

3. Add a method public int getSerialNumber() which returns the serialNumber

field.
4. Add a method public String toString(), which returns the serialNumber as

String.

Hint:You can use Integer.toString(serialNumber) for that.
5. Create a class AutomatedWarehouse and automatically generate a main-method (see screenshot).

6. To test your implementation, create a Pallet object and print it to the console. Verify the output.

Task 2 (Conveyor Belt)

1. Create a class ConveyorBelt.
2. Add a field private List<Pallet> pallets.

Initialize it via new ArrayList<>().

Hint: You need to import List and ArrayList from java.util. Eclipse helps you with that:

3. Add a method public void loadPallet(Pallet pallet) that adds the given Pal-

let to the List pallets.

Hint: You can use a list’s method add(Pallet pallet) for that.
4. Add a method public List<Pallet> getPallets() that returns the list called pallets.
5. To test your implementation, go to the main method in AutomatedWarehouse and add this:

a. Create a ConveyorBelt instance and name it conveyorBelt
b. Create two more Pallets pallet2 and pallet3, with the serialNumbers 42 and 2020
c. Add all three Pallets to the conveyorBelt using the loadPallet method
d. Print all pallets via the following command:

System.out.println(“All pallets are: “

+conveyorBelt.getPallets());

The output should be the following:

Task 3 (Forklift)

1. Create a class Forklift.

2. Add a field private Pallet[] palletSlots

and a field private ConveyorBelt conveyorBelt.
3. Add a constructor public Forklift(Pattet[] palletSlots, ConveyorBelt

conveyorBelt), which saves both arguments to the private fields.

Hint: As in task 1, use the keyword this to assign the values.

Task 4 (Automated Warehouse)

1. Navigate to the main method in AutomatedWarehouse.
2. Comment-out all code in the main method you have written so far. Code marked as a comment

will not be executed. Start the Comment with /* and end it with */

3. In your “empty” main method, create an Pallet[] array of size 10 and name it palletSlots.

Hint: See slide 43 of module 4 for an example.
4. Create five Pallet objects via new Pallet(int serialNumber) with the serial numbers

541201, 541202, 663319, 663325 and 909042. Name them pallet1, pallet2, and so on.
5. Add these Pallet objects to the above created array at slots 1, 2, 5, 6 and 9. Do not assign any-

thing to the other slots, so they will automatically contain null.
6. Also, create a ConveyorBelt conveyorBelt = new ConveyorBelt();
7. Finally, create a forklift instance via

Forklift forklift = new Forklift(palletSlots, conveyorBelt);

8. Verify your implementation via the debugger. Add a breakpoint to where Pallet[] is created. Start

the debugger and inspect your program line by line.

When you went over Pallet pallet5 = new Pallet(909042); the debugger should

look like this:

Task 5 (Bringing the Forklift to Life Part 1)

1. You will now enable the Forklift to move and shift Pallets.

2. Create a new Java class named ForkliftOutOfBoundsException that extends

Exception.

3. Navigate to the Forklift class and add a field private int position.

4. Add a method public void moveTo(int position) throws ForkliftOutOf-

BoundsException, which sets the private field position to the given value.

5. Before setting the position, check if the given position is in the Forklift’s boundaries (0-9).

If not, throw a new ForkliftOutOfBoundsException().

Hint: Use if to check if the given position is smaller than 0 or greater than 9.

6. We want to know if there is a Pallet at the forklift’s current position.

Add a method public boolean seesPallet() that returns true, if there is a Pallet

in the palletSlots at the forklift’s current position, and false otherwise.

Hint: If palletSlots has null at the position, then there is no pallet (return false).

7. Verify your implementation: Navigate to the main method in AutomatedWarehouse and add the

following:

The output should be:

8. When done, delete the code you added in 7, it was only for verification.

Task 6 (Bringing the Forklift to Life Part 2)

1. We want to allow the forklift to lift pallets.

Navigate to the forklift class and add a field Pallet private Pallet currentPallet.

2. Add a method public void liftPallet() to the forklift, that

 Assigns the Pallet from the palletSlots[position] to the private field
currentPallet

 And removes the just picked up Pallet from the palletSlots.

Hint: Assign null to the palletSlots[position] to remove the pallet.

3. We want to allow the forklift to place pallets on the conveyor belt.

4. Add a method

public void placeOnBelt() throws ForkliftOutOfBoundsException that

 Moves the forklift to the conveyor belt’s position (0)

Hint: You don’t need to catch the exception thrown by moveTo() here.

 Calls conveyorBelt.loadPallet(this.currentPallet) to load the cur-

rent pallet on the belt.

 Sets the currentPallet to null to stop carrying it.

5. Verify your implementation by adding code to your main method in AutomatedWarehouse:

The output should look like this:

6. When done, delete the code you added in 5, it was only for verification.

Final Task 7 (Scheduling the Forklift)

1. In the final task, you need to load all pallets on the conveyor belt. Therefore, iterate over all

pallet slots via for(int slot=1; slot<=9; slot++) and for each slot do:

 Use forklift.moteTo(slot) to move the forklift to a pallet slot

 Check if there is a pallet at its current position using the seesPallet() method.

 If true: Call liftPallet() and then place it on the belt via placeOnBelt().

 If false: Do nothing.

2. Hint: You need to catch any ForkliftOutOfBoundsExceptions here, so wrap your

for-loop into a try-catch-block.

3. After the for-loop, print a list of all loaded pallets to the console.

Hint: Call System.out.println(“Load: “+conveyorBelt.getPallets()).

Hint: The conveyorBelt.getPallets() automatically calls pallet.toString()

for each pallet for you.

The output should look like:

4. Verify your implementation as follows, re-run the program and inspect the output each time:

 Changing the serial number of some pallets in the main method.

 Add one or two additional pallets to the palletSlots array.

 Remove some pallets from the palletSlots array.

