

Summer School 2018 – Final Project

Task 1 (Setup)

1. Go to the project template for the final project.

2. Have a look at the different classes and get familiar with the code in them.

3. Implement a new class Testing which has a main()-method and which will be used throughout

this project to test your implementations.

4. In this method, add System.out.println(“I am a robot”);

Make sure that the robot is on!
5. Send the code to the robot and it will execute the commands, see the screenshot below.

6. The print message is printed on the robot display instead of the eclipse console. To keep the mes-

sages on the display add Button.waitForAnyPress(); at the end of your program. Exe-

cute your code again. Make sure that you see the output printed to the display. Press any button to

exit the program.

IMA - RWTH Aachen University
Institute of Information Management in Mechanical Engineering IMA

Acting Head of Institute: Univ.-Prof. Dr.-Ing. Christian Hopmann
1st Deputy: apl.-Prof. Dr. habil. Ingrid Isenhardt
2nd Deputy: Dr. rer. nat. Frank Hees
Apl.-Prof. Dr. rer. Nat. Sabina Jeschke
Senior Advisor: Univ.-Prof. Dr.-Ing. em. Klaus Henning

Task 2 (Actuators)

In this task, you will enable the robot to perform the movements necessary for solving the project

task.

1. Open the class Actuators. Look at the different methods understand their purpose.

2. Write a new method moveAboveRing which takes the index of an ring as an argument. The func-

tion does not return anything. First make sure that the ring index provided is either 0, 1 or 2.

Throw an IndexOutOfBoundsException if it is not.

3. Calculate the angle to which the robot should rotate to. Assume that the rings are at -45°, 0° and

45°.

4. Use the Motor C to rotate the robot according to the angle you determined. Test your code by

calling the moveAboveRing function from the Testing class.

5. As you might have noticed, the robot does not turn as much as expected. This is because the gear

translation has to be taken into account. The gears used have 55 and 8 teeth. Calculate the trans-

mission and store this value in the constant TRANSMISSION_ROTATION. Then use TRANS-

MISSION_ROTATION to correct your calculation of the angle.

Task 3 (Sensors)

In this task, you will enable the robot to use its sensors and perceive its surroundings.

1. Open the class Sensor.

2. Instantiate a LightSensor light. Like the UltrasonicSensor, the constructor requires a port number.

Use port S4.

3. Write a function getColor which reads the normalized value of the light sensor. Use the

THRESHOLD_RED and THRESHOLD_BLUE to determine if the object in front of the sensor is

red or blue. The function should return a String which is either “RED” or “BLUE”.

4. Create a new exception InvalidColorDetectedException. Throw this exception in your

function getColor if the color detected is neither red nor blue.

5. Test your function from your Testing class. Place the balls in front of the sensor and check if the

right color is detected.

Task 4 (Basic Movements)

Now you will enable the robot to move a ball from one ring to another. The robot will use this skill to

solve the final challenge of this project.

6. Open the class Robot and create a new method called moveBall. The method should take two

Integer arguments called from and to. The input arguments denote from which ring and to which

ring the robot should move a ball.

7. Implement the behavior described by the following activity diagram

Task 5 (Full Program)

Finally, you will implement the switching of two balls by the robot.

1. In the class Robot create a new class run.

2. Assume that the balls are on ring 0 and 1. Implement the switching of the balls. Use the method

moveBall from Task 4.

3. Test your implementation using the Testing class.

Task 6 (Additional Functionality)

Now that the robot is able to switch the balls between ring 0 and 1, the next step is switch-
ing balls between arbitrary rings.

1. Go back to the class Actuator. Implement a new function called moveToCheckRing. Similar

to the function moveAboveRing from Task 2, the new function takes a ring id as argument. In-

stead of moving directly over the ball, move the robot 20° right of the ring to place the ultrasonic

sensor over the ring.

2. Extend your method run in the class Robot. Use moveToCheckRing method to move over all

rings subsequently and determine, which rings have balls on them and which one does not.
3. Adjust the code moving the balls between ring 0 and 1 to move the balls between any rings, de-

pending on which ring was found to be empty.

