Object-Oriented Programming In Mechatronic Systems

Summer School 2018

Module 3 — Basics in Object-Oriented Programming in Java
Aachen, Germany
Cybernetics Lab IMA & IfU

Faculty of Mechanical Engineering
RWTH Aachen University

What is Object-Oriented Programming?

2 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

What is Object-Oriented Programming?

{5 First of all: It is a programming paradigm!

« A programming paradigm can be understood as a style

« There are many languages and several paradigms out there!

* For instance procedural, declarative or functional

« ... and of course: object-oriented programming (OOP), e.g. Java or C++
* Many languages support more then one paradigm (Java too!)

Programming Language Paradigms

O (Not comprehensive)

0: (Nertoiecale) Imperative

C

Pascal

Procedural Ci++) Object-Oriented

Eiffel
/ Java

CLOS M1,
=

Functional Lisp

3 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

What is Object-Oriented Programming?

Procedural programming

« Core concept: Procedure calls

* Procedures: routines, subroutines or functions

« Contain a series of computational steps to be carried out

* Any procedure can be called during the program’s execution
* Including other procedures or itself

« Examples: C or Pascal

Main -
— r*Functmn .
oy Function
-|--|.
B ——
4 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

What is Object-Oriented Programming?

Brief history of OOP languages

1960

Wl\ rorn] CLEPY

Slmula

1970 Smalltalk e [Planner " Prolog
Smalltalk- ?4
cal
Smalltalk-76
Smalltalk-78 v
Loops
Smalltalk-80

1980 Modula2 Oblectn.re C

h 4
ObjectPas cal CLOS

]

1990 4
ObjectCobol
ﬂ S
2000 [c# |

nicht oo. l [objektorient.]

5 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

What is Object-Oriented Programming?

The core concept of OOP is the object!

Real-world objects have two characteristics:
1. State, e.g. a bicycle could have several states (e.g. gear, speed ...)

2. Behavior, e.g. a bicycle could do things and behave differently (e.g. applying
breaks)

Motivation for using OOP

» Software objects are conceptually similar to real-world objects
* They store their state in fields and expose their behavior through methods
» Objects communicate with each other by passing “messages”

6 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

What is Object-Oriented Programming?

Motivation for using OOP

* Modularity: Source code can be written and maintained independently

* Information-Hiding: Internal implementation remains hidden from the outside
« Code Re-use: If an object already exists this object can be used by you

OOP vs Procedural Programming
* Procedural programming uses procedures to operate on data structures
... While in OOP they are bundled together

An object operates on its own data structures!

You can also use the procedural paradigm in Java!

7 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

What is Object-Oriented Programming?

What are classes?

« Atemplate, a blueprint - it's not a concrete realization of something!
« Think of a concept!

 And you need a class (the blueprint) before you can create an object

8 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

What is Object-Oriented Programming?

Terminology
» Class: Defines what an object of this class knows (state) and does (behavior)

* Object: An instance of a class (a concrete thing create from the template /
blueprint)

* Instance Variables: They represent what an object knows (the state)
 Methods: They represent what an object can do (the behavior)

Difference between a class and object
 Aclass is not an object!

A class represents a blueprint for an object

It tells us (or the JVM) how to make objects of a particular class
Each object made of a class has its own states

9 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

What is Object-Oriented Programming?

Abstraction/

Modeling |

Real World Programmer

v

Object

v

Object
Object

If successful, this medium of expression (the object-oriented way) will be
significantly easier, more flexible, and efficient than the alternatives as problems
grow larger and more complex.

10 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

What is Object-Oriented Programming?

Example: Classes and Objects

Point

A Point in two dimensional space has two

X _—
y

— instance variables (attributes): x and y coordinates

move <«——_|

' A method to move the point

Instancel
A first concrete instance of a point

PY Instance2

A second concrete instance of a point

v

11

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

What is Object-Oriented Programming?

Example: Classes and Objects

Blueprint
Instancel:Point Instance2:Point
x =10 x=20
y =40 y=10
move move
40 ®o— Instaé'

A first concrete instance of a point

101 PY Instance?2 _ _
A second concrete instance of a point

v

12 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

What is Object-Oriented Programming?

Example: Classes and Objects
Blueprint

Instancel:Point

x =10
y =40

P move

Let‘'s move Instance1, by using move

4 Therefore, we need additional information!
40 —— - Instancel
10 ++— o @ «— Instance?2
I | .
I I "
10 20
13 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

What is Object-Oriented Programming?

Example: Classes and Objects

Instancel:Point Instancel:Point
x =10 x =10
y = 40 » Yy = 10
move(X, Yy) move(X, Yy)

Concrete call: move(0, -30)

A
40 —— - Instancel
10 ++— o @ «— Instance?2
| | |-
I I "
10 20
14 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

What is Object-Oriented Programming?

Example: Classes and Objects

We did not specify the type of the
attributes and parameters, yet!

move(X, y)

Point Now we have a blueprint to create
sint hundreds and thousand of points
y:int

move(x:int, y:int)

15 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

B 0| IR

What is Object-Oriented Programming?

Core Concept |: Data encapsulation

« Encapsulation is the bundling of data with the methods that operate on them
 Remember that in procedural programming this is not the case!

« Also used for hiding the internals of the object from outside view

* Only the object’'s own methods can operate on it's data

* Protects an object’s integrity!

Encapsulation

Private

Instance Variables methods

variables <F Class

16 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

What is Object-Oriented Programming?

Core Concept Il: Inheritance

 Different kinds of objects have a certain amount in common with each other ...

« E.g. mountain bikes and tandems all share the characteristics of bicycles

* ... yet they each define additional features that make them different

« OOP allows classes to inherit commonly state and behavior from other classes:
* Bicycle can be a superclass of the subclasses MountainBike and Tandem

[€€

Bicycle

| | |

|

[&6 L ¢ &
@ @ @

Mountain Bike Road Bike Tandem Bike

17 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

What is Object-Oriented Programming?

Core Concept Ill: Polymorphism

« It's a principle from biology

* An organism can have many different forms or stages

* Poly: many (e.g. polygon); Morph: form (e.g. morphology)

* In OORP it allows to provide a single interface to varying entities of the same type

Triangle | | Rectangle
Draw() | | Draw() | Draw(
18 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

What is Object-Oriented Programming?

Core Concept IV: Communication between objects

* Objects can communicate with each other

* ... by passing messages!

* One object can get another object to do something
* ... through method calls!

- Call a method and pass it some arguments (i.e. messages) or
Get something from a method trough its returned value.

Methods will be
covered in
detail later this

give me your name

lecture!

ame:

19 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP In Java

20 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Introduction

* Inlecture 1 we have already met a class definition
* How to create objects from it?

« Java supports inheritance, encapsulation, polymorphism and message
passing

Objects Class

21 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Creating a class I: A simple example

public class Point ({

Instance variables
public int x; (or fields)
public int y;

public void move (int delta x, int delta y) {
X = X + delta x;
y =y + delta y;

} A method

22 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Creating a class Il: A simple example

public class Application {

public static void main (String[] args) {

Create a Point
Point pl = new Point() ; object, I.e. create
an instance
10;
40;

pl.x

Set the
pl.y

corrdinates of pl

pl .move (0, -30);

Call move-method

of pl

23 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Creating a class lll: A simple example

public class Application {
public static void main (String[] args) {

Point pl = new Point();

Data type 10;

ofpl i object of the
specified type

Create new

pl.move (0, -30);

}

The new keyword is used for creating instances of classes

24 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Creating a class IV: A simple example

public class Application {

public static void main (String[] args) {

Point pl = new Point();
ple = 10;
pl@y = 40;

pl@move(o, -30) ;
}

}

Use the dot operator to access public instance variables or methods

25 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Inheritance |

* |n Java classes can be derived from other classes ...
« Thereby inheriting fields and methods from those classes
* By using the keyword extends

Terminology

* Subclass: Aclass derived from an other class

» Subclasses are also know as derived, extended or child classes
* Superclass: The class from which the subclass is derived

« Superclasses are also know as base or parent classes

Classes can be derived from classes that are derived from ...

26 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Inheritance Il

« Every class has one and only one direct superclass
» Except Object which has no superclass (see next slide)
* If no other superclass is given every class is implicitly a subclass of Object

Inheritance lll

Charming idea: Reuse existing classes with desired functionality

... by inheriting from them!
A subclass inherits all members (fields, methods) from it's superclass

But not its constructors!

For now think of special methods.

We'll cover constructors shortly!

27 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Inheritance IV

* Asubclass inherits all public and protected members of its parent

* These members can be used in the subclass or replaced or supplemented
« Thatis you can use fields and methods of the superclass

* You can declare new fields in the subclass (that are not in the superclass)
« Same goes for methods

A subclass does not inherit private members of its parent

public, protected and private are

topics of data encapsulation (which will be
covered shortly)

28 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Inheritance V: The class object

» It's on the top of the Java class hierarchy

» It's the most general of all Java classes
« Defines and implements behavior common to all classes

Generalization

e o=

29 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Inheritance: Example

public class Shape {
public String color;

public boolean filled;

}
This Rectangle is a Shape This Triangle is a Shape
with color “red” and not filled with color “blue” and filled
30 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Rectangle is a
Inheritance: Example subclass of Shape

public class Rectangle extends Shape {
public int x1, vl1, x2, Vv2;
public int calculateArea () {

return Math.abs (x2 - x1) * Math.abs(y2 - vyl1);

} It extends its superclass
by a method and four
attributes

31 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Triangle s

Inheritance: Example another subclass
of Shape

public class Triangle extends Shape {

public int x1, vyl1, x2, vy2, x3, y3;

public double getSideA() {

return Math.sqgrt (Math.pow(x2 - x1, 2.0) + Math.pow(y2 - y1l, 2.0));
}
// similar methods to calculate side B and side C
public double calculateArea () {
// calculate area by Heron’s formula
double s = 0.5 * (getSideA() + getSideB() + getSideC()):;
double area = Math.sqgrt(s * (s - getSideA()) * (s - getSideB()) * (s -

getSideC()));
return area;

32 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Inheritance: Example

public class ShapeApplication {

public static void main (String[] args) {

Rectangle rectangle = new Rectangle();
Triangle triangle = new Triangle();
rectangle.color = "red";

Each Triangle and
Rectangleis a
} Shape

triangle.color = "green";

33 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Inheritance: Example

public class ShapeApplication {

public static void main (String[] args) {

Rectangle rectangle = new Rectangle();
rectangle.color = "red";
rectangle.x1l = 0;

rectangle.x2 = 10;

rectangle.yl = 0;

rectangle.y2 = 5;

System.out.println ("Area of rectangle: " +
rectangle.calculateArea())

34 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Inheritance: Example

public class ShapeApplication {

public static void main (String[] args) {
Triangle triangle = new Triangle();
triangle.color = "green";
triangle.xl =
triangle.x2 =
triangle.x3 =
triangle.yl =
triangle.y2 = 5;
triangle.y3 = 0;
System.out.println ("Area of triangle: " +

triangle.calculateAreal());

~e

. O e
~oe

14

o O B O O

35 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Inheritance VI. Inheriting from multiple classes?

public class Rectangle extends Shape exteands—brawineg—{

That's not allowed in Java! “Deadly Diamond of Death”

Object
/\
Shape Drawing
/\ /\
Rectangle
36 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Data encapsulation in Java

« Remember: Encapsulation wraps data and code together as a single unit and
» The variables of a class will be hidden from other classes and

« Can be accessed only through the methods of their current class

* In Java: Declare the variables of a class as private

* And provide public methods to modify and view the variable values

- Again: Encapsulation protects an object’s integrity!

Data encapsulation: Tips on choosing the access level

» Use the most restrictive access level that makes sense for a particular member
 Use private unless you have a good reason not to
* Avoid public fields except for constants

37 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Data encapsulation: Access modifiers

« Java has access modifiers for controlling access to members of a class

» There are two level of access control
« At the top/class level: public, or package-private (no explicit modifier)
« At the member level: public, private, protected, or package-private

public

protected Y Y Y N
no modifier Y Y N N
private Y N N N

38 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Polymorphism in Java

* Polymorphism: the reference type can be a superclass of the actual object type!
* Anything that extends the declared reference variable type can be assigned ...
« ... to the reference variable, but not the other way round (Downcasting!)
* You can have also have polymorphic arguments (and return types) for methods

Animal
Parent food
Parent p = new Parent(); Bonasies
Iocation_
extends . : ot
T Child ¢ = new Child(); Goep0 e
rcam
. . / roam
Child Parent p = new Child(); T Faiins
”'—": makeNoise() roam Wolf
Upcasting eath) |
Hippo makeNoise()
s \""\ sk Cat Dog el
Child c =new Parent(); Tiger makeNoise()
5 = makeNoise() leat) makeNoise()
i i keNoi
incompatible type o leath) | leat) |
39 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Each

Polymorphism: Example Rectangle is a

public class ShapeApplication { Shape

public static void main(String/[]

Shape shapel = new Rectangle() ;

h h 2 = Tri 1 :

Shape shape new Triangle () Also each

N _ vped": Triangleis a

ST Coee Shape
"green";

Hence we can store

them in a variables of
J type Shape

40 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Polymorphism: Example

public class ShapeApplication {
public static void main (String[] args) {

Shape shapel = new Rectangle() ;

Shape shape? = new Triangle() ;

But we only see the
shapel.color = "red"; instance variables and
shapeZ.color = "green"; methods of a Shape

} Hence, you cannot

call the method
} calculateArea

41 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Polymorphism: Example

public class ShapeApplication {

Since we know shapel
contains a Rectangle,

l . ' '
public static void maln (String we can use explicit casts

Shape shapel = new Rectangle ()

®
4

Shape shape?2 = new Triangle();
Rectangle rectangle = (Rectangle) shapel;
rectangle.x1l = 0;

rectangle.x2 = 10;

rectangle.yl = 0;

rectangle.y2 = 5;

System.out.println ("Area of rectangle: " +
rectangle.calculateArea())

42 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Polymorphism: Example

public class ShapeApplication {

Shape shapel = new Rectangle
Shape shape2?2 = new Triangle();
Triangle triangle = (Triangle) shapeZ2;
triangle.x1l = 0;

triangle.x2 = 0;

triangle.x3 = 10;

triangle.yl = 0;

triangle.y2 = 5;

triangle.y3 = 0;

System.out.println ("Area of triangle: " +

triangle.calculateAreal());

43 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

OOP in Java

Polymorphism: Arguments

Any subclass of
public class ShapeDrawer { Shape allowed

public void draw (Shape s) {
// some fancy code to draw shapes

With polymorphism you can write very flexible code!

The above example will work with any new subclass of Sshape, e.g. class
Triangle!

44 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Methods: A Closer Look

45 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Methods: A Closer Look

Overview

* Methods: They represent what an object does (the behavior)
* Methods use instance variables

* They can have parameters

* They must have an return type (which can be void)

A short example (for a void method with no parameters)

public void printHelloAachen () {

System.out.println (“Hello Aachen”);

46 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Methods: A Closer Look

A more complex example (and terminology)

Return Parameter

type list

public int calculateSum(int a, int b) {
int sum = a + b;

return sum;

Keyword
return
47 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

Methods: A Closer Look

Method declarations have six components

* Modifiers: such as public, private and others

* Return type: data type of the value returned by the method (or void if no return)
 Method names: see below

« Parameter list: comma-delimited list of input parameters, preceded by data type
« Exception list: discussed in module 4

 Method body: methods code including local variables

Conventions for naming methods

« Names should be a verb in lowercase...
* ... or a multi-word name that begins with a verb in lowercase
« Examples: run, runFast, isEmpty, getFinalData, setEngineSpeed

Java is always pass-by-value!

48 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Methods: A Closer Look

Method signatures

« The method’s name and the parameter types form the signature
 Example: calculateSum (int, int)

« The return type is not part of the signature

Overloading methods

« Java can distinguish between methods with different signatures

* Methods within a class can have the same name

« But only if they have different parameter lists!

* They are differentiated by the number and type of the arguments passed to them
* You can not declare two methods with same signature but different return type!

« Examples: draw (String s), draw(int i), draw(int i, double f)

49 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Methods: A Closer Look

Excurse: Getters and Setters

Are ordinary methods, i.e. they take parameters and return a value

They let you get and set things, mostly instance variables

A Getter sends back the value of whatever is supposed to get

A Setter takes an argument and uses it to set the value of an instance variable

Example

public class Shape {

private String color; Remember
public String getColor () { encapsulation? ©
return color;

}

public void setColor (String newColor) {
color = newColor;

50

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Constructors

51 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Constructors

Constructors |

« A class contains constructors that are invoked to create objects

« They are there to instantiate a class!

» Constructors look similar to methods ...

« ... except that they use the same name as the class and have no return type!

Example
public class Rectangle extends Shape {

public Rectangle(int aXl, int a¥Yl, int aX2, int a¥2) {
x1l = aXl;
yl = a¥l;

52 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Constructors

Constructors |l

Constructors run before the object can be assigned to a reference!
It runs every time you invoke new

... Which is called the default constructor!

Example
public class Rectangle extends Shape {

public Rectangle () {

That would be written
} by the compiler!

If you don’t write a constructor for your class the compiler writes one for you ...

53 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Constructors

Constructors Il

« Constructors are not inherited by the subclass!

* You can have multiple constructors in your class

« That's called constructor overloading!

« Each constructor must have a different parameter list!

Example
public class Rectangle {

public Rectangle () {}

public Rectangle (int x1, 1int yl, int x2, 1int y2){..}

public Rectangle(int x1, int yl, 1int x2, int y2, String
color) (..}

54 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Abstract classes/methods and interfaces

Abstract Classes

« Some classes should not be instantiated!

« Think of the Shape class ... it is just an abstract definition of shapes!

* You can prevent class from being instantiated by marking them abstract!

* The opposite to abstract classes are concrete classes!

« Generally, abstract classes are used for polymorphism (or for inheritance)

Example
public abstract class Shape {

Shape shape = new

Shape () ;
will yield an compiler error!

55 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Abstract classes/methods and interfaces

Abstract Methods

* You can mark methods abstract, too!

* If you declare a method abstract the class must be abstract as well!
* An abstract method must be overridden in a concrete subclass!
* An abstract method has no body: just end the declaration with a semicolon!

Example
public abstract class Shape {

public abstract double calculateArea();
public abstract double calculatePerimeter();

56 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Abstract classes/methods and interfaces

Interfaces

Sometimes it's necessary for programmers to agree on a contract ...

Generally speaking, interfaces are such contracts!

In Java an interface is a reference type!

An interface defines only abstract methods!

An interface is created using the keyword interface!

A class implements an interface using the keyword implements!
A class can implement multiple interfaces!

57

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Abstract classes/methods and interfaces

Interfaces: Example

public interface Drawable {

public abstract void draw();
public abstract void rotate();

58 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Abstract classes/methods and interfaces

Interfaces: Example

public class Rectangle implements Drawable

private String color;

// Implement this method! It’s the contract!
public void draw() {..}

// Implement this method! It’s the contract!
public void rotate() {..}

59 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Abstract classes/methods and interfaces

Class vs subclass vs abstract class vs interface

New class (that doesn’t extend anything): if there’s nothing to meaningful extend
Subclass: If a more specific version of an existing class is needed

Abstract class: If nobody should make objects of the class (e.g. it’s a template)
Interface: For defining a contract that other classes must fulfill!

60

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

