
Object-Oriented Programming In Mechatronic Systems

Summer School 2018

Module 3 – Basics in Object-Oriented Programming in Java

Aachen, Germany

Cybernetics Lab IMA & IfU

Faculty of Mechanical Engineering

RWTH Aachen University

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

2

What is Object-Oriented Programming?

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

3

What is Object-Oriented Programming?

• A programming paradigm can be understood as a style

• There are many languages and several paradigms out there!

• For instance procedural, declarative or functional

• … and of course: object-oriented programming (OOP), e.g. Java or C++

• Many languages support more then one paradigm (Java too!)

 First of all: It is a programming paradigm!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

4

What is Object-Oriented Programming?

• Core concept: Procedure calls

• Procedures: routines, subroutines or functions

• Contain a series of computational steps to be carried out

• Any procedure can be called during the program’s execution

• Including other procedures or itself

• Examples: C or Pascal

Procedural programming

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

5

What is Object-Oriented Programming?

Brief history of OOP languages

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

6

What is Object-Oriented Programming?

The core concept of OOP is the object!

Real-world objects have two characteristics:

1. State, e.g. a bicycle could have several states (e.g. gear, speed …)

2. Behavior, e.g. a bicycle could do things and behave differently (e.g. applying

breaks)

Motivation for using OOP

• Software objects are conceptually similar to real-world objects

• They store their state in fields and expose their behavior through methods

• Objects communicate with each other by passing “messages”

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

7

What is Object-Oriented Programming?

Motivation for using OOP

• Modularity: Source code can be written and maintained independently

• Information-Hiding: Internal implementation remains hidden from the outside

• Code Re-use: If an object already exists this object can be used by you

OOP vs Procedural Programming

• Procedural programming uses procedures to operate on data structures

• … while in OOP they are bundled together

• An object operates on its own data structures!

• You can also use the procedural paradigm in Java!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

8

What is Object-Oriented Programming?

What are classes?

• A template, a blueprint - it’s not a concrete realization of something!

• Think of a concept!

• And you need a class (the blueprint) before you can create an object

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

9

What is Object-Oriented Programming?

Terminology

• Class: Defines what an object of this class knows (state) and does (behavior)

• Object: An instance of a class (a concrete thing create from the template /

blueprint)

• Instance Variables: They represent what an object knows (the state)

• Methods: They represent what an object can do (the behavior)

Difference between a class and object

• A class is not an object!

• A class represents a blueprint for an object

• It tells us (or the JVM) how to make objects of a particular class

• Each object made of a class has its own states

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

10

What is Object-Oriented Programming?

Real World

Object

Object
Object

Abstraction/

Modeling

Programmer

class {

}

If successful, this medium of expression (the object-oriented way) will be

significantly easier, more flexible, and efficient than the alternatives as problems

grow larger and more complex.

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

11

What is Object-Oriented Programming?

Example: Classes and Objects

Point

x

y

move

A Point in two dimensional space has two

instance variables (attributes): x and y coordinates

A method to move the point

Instance1

A first concrete instance of a point

Instance2

A second concrete instance of a point

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

12

What is Object-Oriented Programming?

Example: Classes and Objects

Point

x

y

move

Instance1

A first concrete instance of a point

Instance2

A second concrete instance of a point

Instance1:Point

x = 10

y = 40

move

40

10

Instance2:Point

x = 20

y = 10

move

20

10

Blueprint

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

13

What is Object-Oriented Programming?

Example: Classes and Objects

Point

x

y

move

Instance1

Instance2

Instance1:Point

x = 10

y = 40

move

40

10 20

10

Blueprint

Let‘s move Instance1, by using move

Therefore, we need additional information!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

14

What is Object-Oriented Programming?

Example: Classes and Objects

Point

x

y

move(x, y)

Instance1

Instance2

Instance1:Point

x = 10

y = 40

move(x, y)

40

10 20

10

Concrete call: move(0, -30)

Instance1:Point

x = 10

y = 10

move(x, y)

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

15

What is Object-Oriented Programming?

Example: Classes and Objects

Point

x

y

move(x, y)

We did not specify the type of the

attributes and parameters, yet!

Point

x:int

y:int

move(x:int, y:int)

Now we have a blueprint to create

hundreds and thousand of points

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

16

What is Object-Oriented Programming?

Core Concept I: Data encapsulation

• Encapsulation is the bundling of data with the methods that operate on them

• Remember that in procedural programming this is not the case!

• Also used for hiding the internals of the object from outside view

• Only the object’s own methods can operate on it’s data

• Protects an object’s integrity!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

17

What is Object-Oriented Programming?

Core Concept II: Inheritance

• Different kinds of objects have a certain amount in common with each other …

• E.g. mountain bikes and tandems all share the characteristics of bicycles

• … yet they each define additional features that make them different

• OOP allows classes to inherit commonly state and behavior from other classes:

• Bicycle can be a superclass of the subclasses MountainBike and Tandem

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

18

What is Object-Oriented Programming?

Core Concept III: Polymorphism

• It’s a principle from biology

• An organism can have many different forms or stages

• Poly: many (e.g. polygon); Morph: form (e.g. morphology)

• In OOP it allows to provide a single interface to varying entities of the same type

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

19

What is Object-Oriented Programming?

Core Concept IV: Communication between objects

• Objects can communicate with each other

• … by passing messages!

• One object can get another object to do something

• … through method calls!

• Call a method and pass it some arguments (i.e. messages) or

• Get something from a method trough its returned value.

Methods will be

covered in

detail later this

lecture!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

20

OOP in Java

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

21

OOP in Java

Introduction

• In lecture 1 we have already met a class definition

• How to create objects from it?

• Java supports inheritance, encapsulation, polymorphism and message

passing

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

22

OOP in Java

Creating a class I: A simple example

public class Point {

public int x;

public int y;

public void move(int delta_x, int delta_y) {

x = x + delta_x;

y = y + delta_y;

}

}

Instance variables

(or fields)

A method

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

23

OOP in Java

Creating a class II: A simple example

public class Application {

public static void main (String[] args) {

Point p1 = new Point();

p1.x = 10;

p1.y = 40;

p1.move(0, -30);

}

}

Create a Point

object, i.e. create

an instance

Set the

corrdinates of p1

Call move-method

of p1

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

24

OOP in Java

Creating a class III: A simple example

public class Application {

public static void main (String[] args) {

Point p1 = new Point();

p1.x = 10;

p1.y = 40;

p1.move(0, -30);

}

}

Data type

of p1

 The new keyword is used for creating instances of classes

Create new

object of the

specified type

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

25

OOP in Java

Creating a class IV: A simple example

public class Application {

public static void main (String[] args) {

Point p1 = new Point();

p1.x = 10;

p1.y = 40;

p1.move(0, -30);

}

}

 Use the dot operator to access public instance variables or methods

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

26

OOP in Java

Inheritance I

• In Java classes can be derived from other classes …

• Thereby inheriting fields and methods from those classes

• By using the keyword extends

Terminology

• Subclass: A class derived from an other class

• Subclasses are also know as derived, extended or child classes

• Superclass: The class from which the subclass is derived

• Superclasses are also know as base or parent classes

 Classes can be derived from classes that are derived from …

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

27

OOP in Java

Inheritance II

• Every class has one and only one direct superclass

• Except Object which has no superclass (see next slide)

• If no other superclass is given every class is implicitly a subclass of Object

Inheritance III

• Charming idea: Reuse existing classes with desired functionality

• … by inheriting from them!

• A subclass inherits all members (fields, methods) from it’s superclass

• But not its constructors!

For now think of special methods.

We‘ll cover constructors shortly!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

28

OOP in Java

Inheritance IV

• A subclass inherits all public and protected members of its parent

• These members can be used in the subclass or replaced or supplemented

• That is you can use fields and methods of the superclass

• You can declare new fields in the subclass (that are not in the superclass)

• Same goes for methods

 A subclass does not inherit private members of its parent

public, protected and private are

topics of data encapsulation (which will be

covered shortly)

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

29

OOP in Java

Inheritance V: The class object

• It’s on the top of the Java class hierarchy

• It’s the most general of all Java classes

• Defines and implements behavior common to all classes

Generalization

Specialization

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

30

OOP in Java

Inheritance: Example

public class Shape {

public String color;

public boolean filled;

}

This Rectangle is a Shape

with color “red” and not filled

This Triangle is a Shape

with color “blue” and filled

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

31

OOP in Java

Inheritance: Example

public class Rectangle extends Shape {

public int x1, y1, x2, y2;

public int calculateArea() {

return Math.abs(x2 – x1) * Math.abs(y2 – y1);

}

}

Rectangle is a

subclass of Shape

It extends its superclass

by a method and four

attributes

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

32

OOP in Java

Inheritance: Example

public class Triangle extends Shape {

public int x1, y1, x2, y2, x3, y3;

public double getSideA() {

return Math.sqrt(Math.pow(x2 – x1, 2.0) + Math.pow(y2 – y1, 2.0));

}

// similar methods to calculate side B and side C

…

public double calculateArea() {

// calculate area by Heron’s formula

double s = 0.5 * (getSideA() + getSideB() + getSideC());

double area = Math.sqrt(s * (s – getSideA()) * (s – getSideB()) * (s –

getSideC()));

return area;

}

}

Triangle is

another subclass
of Shape

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

33

OOP in Java

Inheritance: Example

public class ShapeApplication {

public static void main(String[] args) {

Rectangle rectangle = new Rectangle();

Triangle triangle = new Triangle();

rectangle.color = "red";

triangle.color = "green";

}

}

Each Triangle and

Rectangle is a

Shape

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

34

OOP in Java

Inheritance: Example

public class ShapeApplication {

public static void main(String[] args) {

Rectangle rectangle = new Rectangle();

rectangle.color = "red";

rectangle.x1 = 0;

rectangle.x2 = 10;

rectangle.y1 = 0;

rectangle.y2 = 5;

System.out.println("Area of rectangle: " +

rectangle.calculateArea());

}

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

35

OOP in Java

Inheritance: Example

public class ShapeApplication {

public static void main(String[] args) {

Triangle triangle = new Triangle();

triangle.color = "green";

triangle.x1 = 0;

triangle.x2 = 0;

triangle.x3 = 10;

triangle.y1 = 0;

triangle.y2 = 5;

triangle.y3 = 0;

System.out.println("Area of triangle: " +

triangle.calculateArea());

}

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

36

OOP in Java

Inheritance VI: Inheriting from multiple classes?

public class Rectangle extends Shape extends Drawing {

 That’s not allowed in Java! “Deadly Diamond of Death”

Rectangle

Shape Drawing

Object

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

37

OOP in Java

Data encapsulation in Java

• Remember: Encapsulation wraps data and code together as a single unit and

• The variables of a class will be hidden from other classes and

• Can be accessed only through the methods of their current class

• In Java: Declare the variables of a class as private

• And provide public methods to modify and view the variable values

• Again: Encapsulation protects an object’s integrity!

Data encapsulation: Tips on choosing the access level

• Use the most restrictive access level that makes sense for a particular member

• Use private unless you have a good reason not to

• Avoid public fields except for constants

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

38

OOP in Java

Data encapsulation: Access modifiers

• Java has access modifiers for controlling access to members of a class

• There are two level of access control

• At the top/class level: public, or package-private (no explicit modifier)

• At the member level: public, private, protected, or package-private

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no modifier Y Y N N

private Y N N N

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

39

OOP in Java

Polymorphism in Java

• Polymorphism: the reference type can be a superclass of the actual object type!

• Anything that extends the declared reference variable type can be assigned …

• … to the reference variable, but not the other way round (Downcasting!)

• You can have also have polymorphic arguments (and return types) for methods

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

40

OOP in Java

Polymorphism: Example

public class ShapeApplication {

public static void main(String[] args) {

Shape shape1 = new Rectangle();

Shape shape2 = new Triangle();

shape1.color = "red";

shape2.color = "green";

}

}

Each
Rectangle is a

Shape

Also each
Triangle is a

Shape

Hence we can store

them in a variables of
type Shape

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

41

OOP in Java

Polymorphism: Example

public class ShapeApplication {

public static void main(String[] args) {

Shape shape1 = new Rectangle();

Shape shape2 = new Triangle();

shape1.color = "red";

shape2.color = "green";

shape1.calculateArea();

}

}

But we only see the

instance variables and
methods of a Shape

Hence, you cannot

call the method
calculateArea

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

42

OOP in Java

Polymorphism: Example

public class ShapeApplication {

public static void main(String[] args) {

Shape shape1 = new Rectangle();

Shape shape2 = new Triangle();

Rectangle rectangle = (Rectangle) shape1;

rectangle.x1 = 0;

rectangle.x2 = 10;

rectangle.y1 = 0;

rectangle.y2 = 5;

System.out.println("Area of rectangle: " +

rectangle.calculateArea());

}

}

Since we know shape1

contains a Rectangle,

we can use explicit casts

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

43

OOP in Java

Polymorphism: Example

public class ShapeApplication {

public static void main(String[] args) {

Shape shape1 = new Rectangle();

Shape shape2 = new Triangle();

Triangle triangle = (Triangle) shape2;
triangle.x1 = 0;

triangle.x2 = 0;

triangle.x3 = 10;

triangle.y1 = 0;

triangle.y2 = 5;

triangle.y3 = 0;

System.out.println("Area of triangle: " +

triangle.calculateArea());

}

}

Same is valid for shape2

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

44

OOP in Java

Polymorphism: Arguments

public class ShapeDrawer{

public void draw(Shape s) {

// some fancy code to draw shapes

}

}

Any subclass of
Shape allowed

 With polymorphism you can write very flexible code!

The above example will work with any new subclass of Shape, e.g. class

Triangle!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

45

Methods: A Closer Look

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

46

Methods: A Closer Look

Overview

• Methods: They represent what an object does (the behavior)

• Methods use instance variables

• They can have parameters

• They must have an return type (which can be void)

A short example (for a void method with no parameters)

public void printHelloAachen() {

System.out.println(“Hello Aachen”);

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

47

Methods: A Closer Look

A more complex example (and terminology)

public int calculateSum(int a, int b) {

int sum = a + b;

return sum;

}

Modifier
Return

type
Method

name

Parameter

list

Keyword

return

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

48

Methods: A Closer Look

Method declarations have six components

• Modifiers: such as public, private and others

• Return type: data type of the value returned by the method (or void if no return)

• Method names: see below

• Parameter list: comma-delimited list of input parameters, preceded by data type

• Exception list: discussed in module 4

• Method body: methods code including local variables

Conventions for naming methods

• Names should be a verb in lowercase…

• … or a multi-word name that begins with a verb in lowercase

• Examples: run, runFast, isEmpty, getFinalData, setEngineSpeed

 Java is always pass-by-value!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

49

Methods: A Closer Look

Method signatures

• The method’s name and the parameter types form the signature

• Example: calculateSum(int, int)

• The return type is not part of the signature

Overloading methods

• Java can distinguish between methods with different signatures

• Methods within a class can have the same name

• But only if they have different parameter lists!

• They are differentiated by the number and type of the arguments passed to them

• You can not declare two methods with same signature but different return type!

• Examples: draw(String s), draw(int i), draw(int i, double f)

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

50

Methods: A Closer Look

Excurse: Getters and Setters

• Are ordinary methods, i.e. they take parameters and return a value

• They let you get and set things, mostly instance variables

• A Getter sends back the value of whatever is supposed to get

• A Setter takes an argument and uses it to set the value of an instance variable

Example

public class Shape {

private String color;

public String getColor(){

return color;

}

public void setColor(String newColor){

color = newColor;

}

}

Remember

encapsulation?

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

51

Constructors

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

52

Constructors

Constructors I

• A class contains constructors that are invoked to create objects

• They are there to instantiate a class!

• Constructors look similar to methods …

• … except that they use the same name as the class and have no return type!

Example

public class Rectangle extends Shape {

public Rectangle(int aX1, int aY1, int aX2, int aY2){

x1 = aX1;

y1 = aY1;

…

}

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

53

Constructors

Constructors II

• Constructors run before the object can be assigned to a reference!

• It runs every time you invoke new

• If you don’t write a constructor for your class the compiler writes one for you …

• … which is called the default constructor!

Example

public class Rectangle extends Shape {

public Rectangle(){

}

}

That would be written

by the compiler!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

54

Constructors

Constructors III

• Constructors are not inherited by the subclass!

• You can have multiple constructors in your class

• That’s called constructor overloading!

• Each constructor must have a different parameter list!

Example

public class Rectangle {

public Rectangle(){}

public Rectangle(int x1, int y1, int x2, int y2){…}

public Rectangle(int x1, int y1, int x2, int y2, String

color) {…}

…

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

55

Abstract classes/methods and interfaces

Abstract Classes

• Some classes should not be instantiated!

• Think of the Shape class … it is just an abstract definition of shapes!

• You can prevent class from being instantiated by marking them abstract!

• The opposite to abstract classes are concrete classes!

• Generally, abstract classes are used for polymorphism (or for inheritance)

Example

public abstract class Shape {

…

}
Shape shape = new

Shape();

will yield an compiler error!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

56

Abstract classes/methods and interfaces

Abstract Methods

Example

public abstract class Shape {

public abstract double calculateArea();

public abstract double calculatePerimeter();

}

• You can mark methods abstract, too!

• If you declare a method abstract the class must be abstract as well!

• An abstract method must be overridden in a concrete subclass!

• An abstract method has no body: just end the declaration with a semicolon!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

57

Abstract classes/methods and interfaces

Interfaces

• Sometimes it’s necessary for programmers to agree on a contract …

• Generally speaking, interfaces are such contracts!

• In Java an interface is a reference type!

• An interface defines only abstract methods!

• An interface is created using the keyword interface!

• A class implements an interface using the keyword implements!

• A class can implement multiple interfaces!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

58

Abstract classes/methods and interfaces

Interfaces: Example

public interface Drawable {

public abstract void draw();

public abstract void rotate();

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

59

Abstract classes/methods and interfaces

Interfaces: Example

public class Rectangle implements Drawable {

private String color;

…

// Implement this method! It’s the contract!

public void draw() {…}

// Implement this method! It’s the contract!

public void rotate() {…}

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

60

Abstract classes/methods and interfaces

Class vs subclass vs abstract class vs interface

• New class (that doesn’t extend anything): if there’s nothing to meaningful extend

• Subclass: If a more specific version of an existing class is needed

• Abstract class: If nobody should make objects of the class (e.g. it’s a template)

• Interface: For defining a contract that other classes must fulfill!

Thank you very much!

