
Object-Oriented Programming In Mechatronic Systems

Summer School 2018

Module 4 – Advanced Programming in Java

Aachen, Germany

Cybernetics Lab IMA & IfU

Faculty of Mechanical Engineering

RWTH Aachen University

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

2

Recap

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

3

Recap

public class IfElseDemo {

public static void main(String[] args) {

int testscore = 76;

char grade;

if (testscore >= 90) {

grade = 'A';

} else if (testscore >= 80) {

grade = 'B';

} else if (testscore >= 70) {

grade = 'C';

} else {

grade = 'F';

}

System.out.println("Grade = " + grade);

}

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

4

Recap

public class LoopDemo{

public static void main(String[] args) {

for (int i = 0; i < 15; i++){

System.out.println("Loop " + i);

}

}

Output:

Loop 0

Loop 1

…

Loop 14

i = i + 1

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

5

Recap

Recap and Motivation

• Primitive data types (e.g. int) can only hold a single value

• E.g. int val = 17;

Array Features

• Arrays can hold multiple values (or elements)!
• Can only hold one data type, i.e. no mixture of data types (e.g. int and char)

• Length is established upon creation: int[] numbers = new int[10]

• After that it’s fixed!
• Access to elements via index: numbers[0], numbers[5]

• Index starts with 0. That is, the first array element has the index 0:

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

6

Recap

Example: Classes and Objects

Point

x

y

move(x, y)

point1

point1:Point

x = 10

y = 40

move(x, y)

40

10 20

10

Concrete call: move(0, -30)

point1:Point

x = 10

y = 10

move(x, y)

move x: 0

move y: -30

move x: 0

move y: -30

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

7

Recap

Instances: Example

public class Shape {

public String color;

public boolean filled;

}

This Rectangle is a Shape

with color "red" and not filled

This Triangle is a Shape

with color "blue" and filled

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

8

Recap

Constructors

• Constructors run before the object can be assigned to a reference

• It runs every time you invoke new

• If you don’t write a constructor for your class the compiler writes one for you …

• … which is called the default constructor!

Example

public class Circle {

private int radius;

public Circle(){

}

public Circle(int r){

this.radius = r;

}

}

Constructor

Default

constructor

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

9

Communication and Relations between
Objects

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

10

Communication and Relations between Objects

Point2D

-x:double

-y:double

+Point2D(x:double, y:double)

+getX():double

+getY():double

+move(delta_x:double, delta_y:double)

Every rectangle is defined by two Point2Ds:

• First point defines the lower left corner

• Second point defines the upper right corner

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

11

Communication and Relations between Objects

Rectangle

-lowerLeft:Point2D

-upperRight:Point2D

+Rectangle(lowerLeft:Point2D, upperRight:Point2D)

+setLowerLeft(lowerLeft:Point2D):void

+getLowerLeft():Point2D

+setUpperRight(upperRight:Point2D):void

+getUpperRight():Point2D

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

12

Communication and Relations between Objects

public class Rectangle {

private Point2D lowerLeft;

private Point2D upperRight;

public Rectangle(Point2D lowerLeft, Point2D upperRight) {

this.lowerLeft = lowerLeft;

this.upperRight = upperRight;

}

…

}

lowerLeft and upperRight are names of local and instance variables!
Hence, we need a way to distinguish the variables  this

Constructor

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

13

Communication and Relations between Objects

public class Rectangle {

private Point2D lowerLeft;

private Point2D upperRight;

…

public void setLowerLeft(Point2D lowerLeft) {

this.lowerLeft = lowerLeft;

}

public Point2D getLowerLeft() {

return lowerLeft;

}

…

}

this represents a reference (a pointer) to the current object

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

14

Communication and Relations between Objects

Rectangle

-lowerLeft:Point2D

-upperRight:Point2D

…

+calculateArea():double

public class Rectangle {

…

public double calculateArea() {

return (upperRight.getX() - lowerLeft.getX()) *

(upperRight.getY() - lowerLeft.getY());

}

}

How can we ensure that this calculation works?

More precisely: How can we ensure that lower left and upper right represents

these points and not others?

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

15

Communication and Relations between Objects

We have to check, if the following conditions are always satisfied:

• lowerLeft.getX() < upperRight.getX() and

• lowerLeft.getY() < upperRight.getY()

public class Rectangle {

private Point2D lowerLeft;

private Point2D upperRight;

…

public void setLowerLeft(Point2D lowerLeft) {

if (lowerLeft.getX() < upperRight.getX() &&

lowerLeft.getY() < upperRight.getY()) {

this.lowerLeft = lowerLeft;

}

// else we do nothing (perhaps not the best solution!)

}

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

16

Communication and Relations between Objects

40

10 20

10

public class Application {

public static void main(String[] args) {

Rectangle rect = new Rectangle(

new Point2D(10,10),

new Point2D(20,40)

);

System.out.println("The area of rect is: " +

rect.calculateArea();

}

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

17

Communication and Relations between Objects

Square

+Square(lowerLeft:Point2D, upperRight:Point2D)

Rectangle

-lowerLeft:Point2D

-upperRight:Point2D

+Rectangle(lowerLeft:Point2D,

upperRight:Point2D)

+getLowerLeft():Point2D

+getUpperRight():Point2D

+setLowerLeft(lowerLeft:Point2D):void

+setUpperRight(upperRight:Point2D):void

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

18

Communication and Relations between Objects

A Square is a special case of a rectangle, where the sides have equal length

• Square extends and specializes Rectangle

• To save the two points needed to describe a rectangle, we need to call the

constructor of Rectangle

• Use super to call the overridden method or constructor of a superclass

public class Square extends Rectangle {

…

public Square(Point2D lowerLeft, Point2D upperRight){

super(lowerLeft, upperRight);

if(this.upperRight.getX() – this.lowerLeft.getX()

!= this.upperRight.getY() – this.lowerLeft.getY())

{

throw new IllegalStateException();

}

}

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

19

Exception Handling

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

20

Exception Handling

How to handle unforeseen events during program execution?

• That is during runtime: Events like server down, file not found…

• Not everything is under your control! E.g., can you control an external server?

• Such events are called Exception

• Shorthand for exceptional event

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

21

Exception Handling

public class Application {

public static void main(String[] args) {

Rectangle r = new Rectangle(new Point2D(50,10), new

Point2D(20,40));

System.out.println("The area of r is: " +

r.calculateArea();

}

}

40

10 20

10

30 40 50 60

lowerLeft.getX() < upperRight.getX() &&

lowerLeft.getY() < upperRight.getY()

This would result in an illegal state!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

22

Exception Handling

public class Application {

public static void main(String[] args) {

try {

Rectangle r = new Rectangle(new Point2D(50,10), new

Point2D(20,40));

System.out.println("The area of r is: " +

r.calculateArea();

} catch (IllegalStateException e) {

System.err.println("The initialization of rectangle

failed. Reason: " + e.getMessage();

}

}

}

If the initialization fails (due to a created illegal state), an
IllegalStateException is thrown: Now, we can react accordingly, by catching

the Exception.

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

23

Exception Handling

How are exceptions handled in Java?

• If exception occurs within a method, the method throws an exception object

• This object contains information about the error such as type and message

• The runtime tries to find something to handle it, by searching the method call

stack for an exception handler!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

24

Exception Handling

The Catch or Specify Requirement

• Valid code must honor the Catch or Specify Requirement

• If code might throw certain exceptions, code must be enclosed by…

 … a try statement that catches the exception or

 … a method that is marked via the throws clause (telling the caller that the method

can throw such exceptions)

• Code that does not honor the requirement doesn’t compile!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

25

Exception Handling

Catching and Handling Exceptions

Three exception handler components: try, catch, and finally

try

{

statements that can throw exceptions

}

catch (exception-type identifier)

{

statements executed when exception is thrown

}

finally // not mandatory!

{

statements that are always executed

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

26

Exception Handling

public class Rectangle {

private Point2D lowerLeft;

private Point2D upperRight;

…

public void setUpperRight(Point2D upperRight)

throws IllegalStateException {

if (lowerLeft == null ||

(lowerLeft.getX() < upperRight.getX() &&

lowerLeft.getY() < upperRight.getY())

) {

this.upperRight = upperRight;

} else {

throw new IllegalStateException("Upper right condition is

not guaranteed");

}

}

…

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

27

Exception Handling

public class Rectangle {

private Point2D lowerLeft;

private Point2D upperRight;

…

public void setUpperRight(Point2D upperRight)

throws IllegalStateException, IllegalArgumentException {

if (upperRight == null) {

throw new IllegalArgumentException("The argument cannot be

null");

}
if (lowerLeft == null ||

(lowerLeft.getX() < upperRight.getX() &&

lowerLeft.getY() < upperRight.getY())

) {

this.upperRight = upperRight;

} else {

throw new IllegalStateException("Upper right condition is

not guaranteed");

}

}

…

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

28

Communication and Relations between Objects

public class Rectangle {

private Point2D lowerLeft;

private Point2D upperRight;

// constructor

public Rectangle(Point2D lowerLeft, Point2D upperRight)

throws IllegalStateException, IllegalArgumentException {

setLowerLeft(lowerLeft);

setUpperRight(upperRight);

}

…

}

Now we can update our constructor using our setters (with the

extended validation check)

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

29

Communication and Relations between Objects

Finally, we get our application

public class Application {

public static void main(String[] args) {

try {

Rectangle r = new Rectangle(new Point2D(50,10), new

Point2D(20,40));

System.out.println("The area of r is: " +

r.calculateArea());

} catch (IllegalStateException e1) {

System.err.println("The initialization of rectangle

failed. Reason: " + e1.getMessage());

} catch (IllegalArgumentException e2) {

System.err.println(e2.getMessage());

}

}

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

30

The Java API

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

31

The Java API

Java comes with hundreds of classes

• They are bundled in the Java API

• API is shorthand for Application Programming Interface

• What’s in it and how do we use the library?

• In it: Libs for mathematical operations or data structures like array list …

• Use it: You have to know which package the class is in!

Java Packages

• A package is a grouping of related types (e.g. classes or interfaces)

• Make stuff easier to find and use

• … to avoid naming conflicts

• … to control access.

• E.g. java.util (for utilities) or javax.swing (for creating GUIs)

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

32

The Java API

Hundreds of packages and classes (Excerpt)

Thorough description: http://docs.oracle.com/javase/8/docs/api/

Inspect: System.out.println(String s)

http://docs.oracle.com/javase/8/docs/api/

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

33

Data Structures

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

34

Data Structures

What are data structures?

• Informal: a container that provides storage for data items …

• and capabilities for storing and retrieving them.

• Examples: arrays, linked lists, trees, queues …

Data structures in Java

• There are plenty of data structures in the Java API

• We’ll have a look on array lists and maps.

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

35

Data Structures

Recap: Arrays

• Arrays can hold multiple values (or elements)!

• Length is established upon creation, after that it’s fixed!

• Access to elements via index, which starts with 0

Example

public static void main(String[] args) {

int[] ar = new int[3];

ar[0] = 100;

ar[1] = 200;

ar[2] = 300;

System.out.println("Array value on pos 1:" +ar[0]);

System.out.println("Array value on pos 2:" +ar[1]);

System.out.println("Array value on pos 3:" +ar[2]);

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

36

Data Structures

ArrayLists

• Class java.util.ArrayList

• ArrayList class extends AbstractList and implements the List interface

• Are created with an initial size
• Can hold objects (e.g. class Integer or class Point)!

• When this size is exceeded, the collection is automatically enlarged.

• When objects are removed, the array may be shrunk.

Contrast

to arrays!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

37

Data Structures

Excursus: Wrapper Classes

• When working with numbers one can work with primitive types (e.g. int).

• There can be reasons to use objects in place of primitives

• Java provides wrapper classes for each of the primitive data types.

• Wrapping can be done by compiler (compiler boxes primitive in its wrapper class)

• Vice versa: if number object when a primitive is expected (compiler unboxes)
• Each wrapper class comes with methods, e.g. Integer.parseInt("9")

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

38

Data Structures

ArrayList Methods (Excerpt)

• void add(Object element)

Inserts the specified element at the end of this list.

• void clear()

Removes all of the elements from the ArrayList.

• int indexOf(Object o)

Returns the index in this list of the first occurrence of the specified element, or -1

if the List does not contain this element.

• Object remove(int index)

Removes the element at the specified position in this list.

• int size()

Returns the number of elements in this list.

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

39

Data Structures

Example

import java.util.ArrayList;

public class Application {

public static void main(String[] args) {

// create new ArrayList to store rectangles

ArrayList<Rectangle> rList = new ArrayList<>();

// add three rectangle to list

rList.add(new Rectangle(new Point2D(0,0), new Point2D(10,10)));

rList.add(new Rectangle(new Point2D(5,3), new Point2D(6,7)));

rList.add(new Rectangle(new Point2D(12,13),

new Point2D(15,18)));

// continue next slide

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

40

Data Structures

Example (cont’d)

// get size and display.

int count = rList.size();

System.out.println("Number of rectangles: " + count);

// loop through elements.

for (int i = 0; i < rList.size(); i++) {

double x1 = rList.get(i).getLowerLeft().getX();

double x2 = rList.get(i).getUpperRight().getX();

System.out.println("x-Range of rectangle " + i + " is "

+ (x2 – x1));

}

}

}

Thank you very much!

