
Object-Oriented Programming In Mechatronic Systems

Summer School 2018

Module 5 – Implementing Real-World Applications with Java

Aachen, Germany

Cybernetics Lab IMA & IfU

Faculty of Mechanical Engineering

RWTH Aachen University

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

2

Implementation of an Exemplary Application

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

3

Enterprise Resource Planning (ERP)

Enterprise Resource Planning (ERP) refers to the entrepreneurial task of planning

and controlling resources such as capital, personnel, resources, materials,

information and communication technology and IT systems in a timely and

demand-oriented manner for the company's purpose. The aim is to ensure an

efficient operational value-added process and constantly optimized control of

corporate and operational processes.

One of the core functions of ERP in manufacturing companies is material

requirements planning, which must ensure that all materials required for the

manufacture of products and parts are available in the right place, at the right

time and in the right quantity.

We focus on this core function and start by implementing some core

functions of such an system!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

4

Parts and Products

Part

Part

-id:String

-name:String

+Part(id:String, name:String)

+getId():String

+getName():String

-setId(id:String):void

-setName(name:String):void

Thoughts

Each part in our system should be

identifiable by a unique id. Further, it

should be possible to describe each

part by a meaningful name.

We can implement this very easily!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

5

Parts and Products

Product Part

requires

Thoughts

A product is a special kind of a part.

We require a set of parts to

manufacture the product. But it could

be also a part. Hence, we need to

define the required parts to

manufacture our product.

Some more work to do before

implementation!

Product

-requirements:PartRequirementList

+Product(id:String, name:String)

…

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

6

Part Requirements

Product Part

relate to

has

Thoughts

A product requirement consists of two parts: the required part (type) and the

number of parts (quantity).

Hence: Product requirements are a list of parts and their corresponding

quantity!

How do we define these requirements?

PartRequirementList

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

7

Part Quantities

Thoughts

We need a data structure to store the part and the corresponding part

quantity. The part is the marking element (key) and the quantity is the related

information (value)!

Part

key

Map<Part, PartQuantity>

PartQuantity

value

PartQuantity

-quantity:double

-unitDescriptor:String

Constructor, Getter and Setter

… and toString()

We can implement PartQuantity very easily!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

8

Excurse: toString()-Method

System.out.println(new PartQuantity("g", 100));

What is the output if you implement something like that:

de.ima.opms.erp.example.model.PartQuantity@15db9742

Overriding the toString():String method allows you to define the translation

of an object into a String:

public String toString() {

return getQuantity() + (getUnitDescriptor() != null ?

getUnitDescriptor() : "");

}

100.0g

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

9

Interim Conclusion I

Product Part

key

PartRequirementList

has

Map<Part, PartQuantity>

has

PartQuantity

value

Interim Conclusion of our class modelling

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

10

Part Requirements in Detail

Part

key

PartRequirementList

-product:Product

+addPartAsRequirement(part:Part,

quantity:PartQuantity):boolean

+get():Map<Part, PartQuantity>

+toString():String

Map<Part,PartQuantity>

has

PartQuantity
value

Thoughts

We need a way to add a part to the

list of requirements (and its quantity).

Further, it would be nice to have a

way to access the list of

requirements.

So lets do the first part of the

implementation!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

11

Implementing Product

Product Part

key

PartRequirementList

has

Map<Part, PartQuantity>

has

PartQuantity

value

Finally, we can implement a first version of our product!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

12

Products in Detail

Part

key

PartRequirementList

Map<Part,PartQuantity>

has

PartQuantity
value

Thoughts

A product is a more specialized part

and has some requirements.

So lets do the next part of the

implementation!

Product

+Product(id:String, name:String)

+getRequirements():PartRequirementList

+addRequirement(part:Part,

requirement:PartQuantity):boolean

has

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

13

Warehousing

Besides the products and parts, we need something to store everything

Warehouse

Thoughts

Our warehouse needs to have a stock of parts (and products). For each part and

product we need to manage the stored quantity. Further, we should have some

methods to check if a part is available as well as to stock in and out.

Warehouse

-stock:Map<Part,PartQuantity>

+Warehouse()

+isAvailable(part:Part, quantity:PartQuantity):boolean

+isAvailable(partList:Map<Part, PartQuantity>):boolean

+stockIn(part:Part, quantity:PartQuantity):void

+stockOut(partList:Map<Part, PartQuantity>):void

+stockOut(part:Part, quantity:PartQuantity):void

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

14

Warehousing

Warehouse

-stock:Map<Part,PartQuantity>

+Warehouse()

+isAvailable(part:Part, quantity:PartQuantity):boolean

+isAvailable(partList:Map<Part, PartQuantity>):boolean

+stockIn(part:Part, quantity:PartQuantity):void

+stockOut(partList:Map<Part, PartQuantity>):void

+stockOut(part:Part, quantity:PartQuantity):void

We need to check if the available stock satisfies the needed quantity!

1. Get the available quantity!

2. Check if a quantity is set for the part, if not return false. Otherwise

(else), check if the unit descriptors are compatible (easy mode).

3. If the descriptors are not compatible, throw an unsupported operation

exception. Otherwise, check if the available quantity is larger or

equal to the request one.

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

15

Warehousing

public boolean isAvailable(Part part, PartQuantity quantity)

throws UnsupportedOperationException {

// Get the available quantity!

PartQuantity availableQuantity = stock.get(part);

/* Check if a quantity is set for the part, if not return false. Otherwise,

check if the unit descriptors are compatible */

if (availableQuantity == null) {

return false;

}

checkCompatibleUnitDescriptors(availableQuantity,

quantity, true);

// Otherwise, check if the available quantity is larger or equal to the

request one.

return availableQuantity.getQuantity() >=

quantity.getQuantity();

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

16

Warehousing

private boolean checkCompatibleUnitDescriptors(PartQuantity

quantity1, PartQuantity quantity2, boolean throwException)

throws UnsupportedOperationException {

boolean result = (quantity1.getUnitDescriptor() == null &&

quantity2.getUnitDescriptor() == null) ||

quantity1.getUnitDescriptor().

equals(quantity2.getUnitDescriptor());

if (!result && throwException) {

throw new UnsupportedOperationException(

"Quantity descriptors are unequal [" +

quantity1.getUnitDescriptor() + "|" +

quantity2.getUnitDescriptor());

}

return result;

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

17

Warehousing

Let us implement our warehouse – step by step!

Warehouse

-stock:Map<Part,PartQuantity>

+Warehouse()

+isAvailable(part:Part, quantity:PartQuantity):boolean

+isAvailable(partList:Map<Part, PartQuantity>):boolean

+stockIn(part:Part, quantity:PartQuantity):void

+stockOut(partList:Map<Part, PartQuantity>):void

+stockOut(part:Part, quantity:PartQuantity):void

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

18

Interim Conclusion II

We have everything ready to test our implementation in a first

scenario!

Product: Apple Pie

4 egg (s)

250 g sugar

125 g butter

100 ml milk

300 g flour

3 tsp. baking powder

5 m. -size apples

Part list:

Thank you very much!

