Object-Oriented Programming In Mechatronic Systems

Summer School 2018

Module 6 — Introduction to UML
Aachen, Germany

Cybernetics Lab IMA & IfU
Faculty of Mechanical Engineering
RWTH Aachen University

Recap

2 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Recap

Module 4 was about the more advanced concepts of OOP

* this and super

« Exceptions

« Packages

- Java APl and

« Data structures (like ArrayList, ...)

3 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Recap: this — When an Object Refers to Itself

this represents a reference (a pointer) to the current object

public class Rectangle {
private Point2D lowerLeft;

private Point2D upperRight;
public void setlLowerLeft (Point2D lowerLeft) ({

this.lowerleft = lowerLeft;

public Point2D getLowerLeft() ({
return lowerLeft;

4 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Recap: super — When an Object Refers to its Super-Class Parts

public class Square extends Rectangle {

public Square (Point2D lowerLeft, Point2D upperRight) {
super (lowerLeft, upperRight) ;

1f (this.upperRight.getX () - this.lowerLeft.getX()
'!'= this.upperRight.getY () - this.lowerLeft.get¥Y())

throw new IllegalStateException() ;

A Square is a special case of a rectangle, where the sides have equal length
« Square extends and specializes Rectangle

» To save the two points needed to describe a rectangle, we need to call the
constructor of Rectangle

» Use super to call the overridden method or constructor of a superclass

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Recap: Exception Handling

public class Application {

public static void main(String[] args) {
Rectangle r = new Rectangle (new Point2D(50,10), new
Point2D (20,40)) ;
System.out.println("The area of r is: " +
r.calculateArea() ;

}
} “ - - - I
This would result in an illegal state!
40 —+— ‘ lowerLeft.getX () < upperRight.getX () &&
lowerLeft.getY () < upperRight.getY ()
10 o
| | | | | | >
I I I I I I g
10 20 30 40 50 60
6 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

Recap: Exception Handling

public class Application {

public static void main(String[] args) {
try {
Rectangle r = new Rectangle (new Point2D(50,10), new
Point2D(20,40));
System.out.println ("The area of r is: " +

r.calculateAreal();
} catch (IllegalStateException e) {
System.err.println("The initialization of rectangle
failed. Reason: " + e.getMessage()

}

If the initialization fails (due to a created illegal state), an
IllegalStateException IS thrown: Now, we can react accordingly, by catching

7 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

the Exception.
B | P

Recap: Exception Handling

The Catch or Specify Requirement

« Valid code must honor the Catch or Specify Requirement
 If code might throw certain exceptions, code must be enclosed by...

» ...a try statement that catches the exception or

» ... amethod that is marked via the throws clause (telling the caller that the method
can throw such exceptions)

» Code that does not honor the requirement doesn’t compile!

8 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Recap: Exception Handling

Catching and Handling Exceptions

Three exception handler components: try, catch,and finally

try
{
statements that can throw exceptions
}
catch (exception-type identifier)
{
statements executed when exception is thrown
}
finally // not mandatory!
{

statements that are always executed

9 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Recap: Packages

Definition
« A package is a grouping of related types (e.g. classes or interfaces)
« Make stuff easier to find and use

« ... to avoid naming conflicts
« ... to control access.
Usage

« Examples: java.util (for utilities) or javax.swing (for creating GUIS)
« We have to either import it by using the import keyword...
import java.util.ArrayList

« ... ortype in the full name of the class everywhere in our code!

* You can bundle your own code in packages: use the package statement

10 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Recap: Wrapper Classes

Problem

* int, double, float, ... are primitive data types and therefore not defined by
classes = you cannot create an object of type int

« Often you have data structures that can hold objects of a specific type, but only
objects.

Solution: Wrapper Classes

« Java provides wrapper classes for each of the primitive data types.

« Wrapping can be done by compiler (compiler boxes primitive in its wrapper
class) and unboxes them if needed.
| Number

Byte ‘ Double I Float

| Integer | Short | Long

11 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Recap: Java APl and ArrayLists

Class java.util.ArrayList
 ArrayList extends AbstractList and implements the List interface
- Data structure to hold objects (e.g. class Integer or class Point)!

« Automatically manages its size.
« Provides convenient methods to remove, find and add objects to the list.

java.util. ArrayList | size: 5

elementData
| 4
1 % 3 4
~ %00 C (x40 o [x3.0 ~ o x-1.0 o (%130
Pomt Pomt Pomt Pont Pomt
v:0.0 v:0.0 y:-5.0 v:3.0 v: 2.0
12 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

Recap: Java APl and ArrayLists

ArrayList methods (Excerpt)

void add(int index, Object element)
Inserts the specified element at the specified position index in this list.

void add (Object element)
Inserts the specified element at the end of this list.

void clear()
Removes all of the elements from the ArrayList.

Object remove (int index)
Removes the element at the specified position in this list.

int size()
Returns the number of elements in this list.

13

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Unified Modeling Language (UML)

Modeling software before programming

14 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Motivation

Motivation

* Your company is given the task of developing a software system...
 Let’s say a software for handling customer complaints!
How would you proceed?

Would you just start programming?

Source

Ele Ede Refactor Run Novigate Seacch Project Windowe Help
rEHo| B a8 Bald B-O0-QU- EHG- GG - PP Wi 8 oo Y 4 %5 Debug [FTTava
© Navigar 55 I3 Package| T2 Hierarch | Ju tUnee| — O)((1) [SEiava i, O auatiagfromeountry. | m = O)(8 Tosktim 38 =)
| o B%| e cuunn:y country = mull; 22 || | LARS=1E I
& menu nt_cventTyps - 0 Find Q| > AN » Actate
@ values int dumoy=1: =
S i Uncotegorieed
parser.nexe ()
eventType = paracr.getEventType () :
Af (aventType == JmiPuliParser.START TAS)
<
Sering vaiue - parses.gecNeme ()
it (value.cquais ("Countzy™))
v
i€ (country != null) add(country):
country = mew Country():
1] QuizDoneActnty java " %
B quafiag.ldjovs Af (value.equala("Namer)) country.Name = gerNexcvall SOy
1) QuicFlagjav. 1T (value.aquala("capitalm) councry.Capitel = gertn Conneat
&1 Qui i tag romCountryjava AT (value.equals("FlagFile”)) country.FlagFileName -

1) Quishixedjova
1 QuizMiced2 java
D sanguactiveyjeve

1) CountryListjava
(3] Glabats java

18] HighScoreEntry java
1) Highscorelistjava
5 HighScores a

1) QuiHelper java

03] Seetngejava

[defautt properties
[description.ot
b

i

) while (eventType != XmlPullParser.SND DOCUMEND) :
1f (country != null)add(country):

weiatelate 10 dutpentiiia il eaoutnararayt diRReari Entime ik
pa

raer . nex ()

return parser. gestexs s

Javaiol0Esception
Java util ArayList
~ mikzor.capitals R

orgmlpull.v LXmi
+— orgmipull.y1Xmi

(2 Problems | @ Javadoc |) Dectoration | Console | 57 Search (€ Progress 3

Android SDK Content Loader (Finished)
Launching FlagsAndCapitals (Finished)
oK
Launching FlagsAndCapitals (Finished)
oK

Launching FlagsAndCapitals (Finished)
oK

&
%»==0 ~ android.content.res XmiResor
= - android graphics.drawable.Dr
* D Countiylist
2 @ load(Resources) : vaid
= @ gethledValusXmikesource’s
x|
®
-« L .

Writable

SmartInsere

241

Andeoid SDK Content Loader

The following conceptual diagram illustrates all the component technologies in Java SE platferm and how they fit together.

Java Language

* Tools & ---.------

Tool APIs

User

Interface

Toolkits

JDK Integration
Libraries

JRE Other
Base
Libraries

lang and
util

Base
Libraries

Java
Virtual
Machine

Java Language

Java
SE
API
lang and util Collections c*'m,;,fgsmv JAR Logging Management
Preferences Ref i Regular Py i
APl Objects el g Zip Instr

Java Hotspot Client and Server VM

15

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

RWTHAACHEN
UNIVERSITY

Motivation

Planning upfront might be a good idea, but how do you communicate
your ideas, plans and needs?

o 2 Q =
‘T ;L EE

You need a common ground for communication, some kind of a
language: Unfortunately, a natural language cannot succeed in this
task, because it is ambiguous and complex!

16 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Standardization and Visual Modeling

We need a standardized modeling notation, that...
... must have well-defined semantics,
... must be well suited for representing aspects of a system and

... must be well-understood among project participants (which can be dozens of
peoples)

It would be great to have some visual modeling, because...

« ... models are visual: They are potentially a more efficient and effective form of
communication than prose,

« ... models are more precise: It is hard to recognize missing elements in written
forms of requirements, but with a visual model it is more noticeable,

« ... models can represent ideas from different angles / perspectives

17 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Unified Modeling Language

Unified Modeling Language (UML) is a visual modeling language

U

Basic idea of UML
UNIFIED

To provide the stakeholders of an object-oriented software MODELING
development process with a common and standardized LANGUAGE
development and analysis tool.

™

Industry Standard for specifying, visualizing, constructing, and documenting the
artifacts of software systems

UML uses mostly graphical notations to express the OO analysis and design of
software projects

UML simplifies the complex process of software design

18 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Unified Modeling Language

Why we use UML?

Use graphical notations (remember visual modeling): more clearly than
natural language (imprecise) and code (too detailed)

Help acquire an overall view (different perspective) of a system
UML is independent on any programming language or technology
UML moves us from fragmentation to standardization

19 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Unified Modeling Language

UML is standardized

« Current Version: 2.5 (May 2015)

ISO/IEC DIS 19505-1

ISO/IEC DIS 19505-2

Constantly further developed: http://www.omg.org/spec/UML/Current

UML defines different types of diagrams for modeling

Diagram

Two main diagram types 5

« Structure diagrams —— P
« Behaviour diagrams

Diagram Diagram

5

Class Component Object Activity Use Case
- Diagram Diagram Diagram Diagram Diagram
We are focusing on four

d i a r am t e S - Profile csatru gﬁ_ls:;e Deployment Package Interaction State Machine
g y - Diagram Diagram Diagram Diagram Diagram Diagram

]

Interaction

Sequence Communication . Timing
I ﬁ 3 . verview ;
Notation: LML Diaaram Diagram D_ Diagram
ara g Diagram gra

20 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

http://www.omg.org/spec/UML/Current

UML Class Diagram

Person

-name: String
-birthDate: Date
-nationality: String

+setName(name: String): void
+getName(): String

+setBoD(birthDate: Date): void
+getBoD(): Date
+setNationality(nationality : String): void
+getNationality(): String

Teacher Student
-point: String -point: String
+doPresentation(): void +startingTheLecture(): void
+explain(point: String): String iziitéfnal(gf:bitgizg%: String

21 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

UML Activity Diagram

Customer Sales Person
Enter Bakery %[Hail Customer J
Place Order] Get order from
shelf
[further order]

Answer

| Pack order

guestion

Ask for further
orders

K [no further order]
P
Tell total price J
N
Leave Bakery
22 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 | Rm

Aachen, Germany | Cybernetics Lab IMA & IfU

UML Activity Diagram

23 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Activity Diagram

Bringing a system to life, i.e. describing its dynamic behavior

* Previously, we have met component diagrams
* They describe the (static) structure of a system
* ... and not the flow of events!

Different dynamic aspects of a system can be UML-modeled

* Interaction between components: sequence and communication diagram
* The process of state changes: state diagram

* Processes and algorithms: activity diagram

« Activity diagrams are similar to flowcharts

24 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Activity Diagram: Examples

-~

Resolve Issue \

Create
ticket

Reproduce
issue

[can't reproduce]

[issue
reproduced] [known issue] Confiscate PIM

Identify Determine
issue [new issue] resolution

Fix
Issue Insert Card Enter PIN
[issue not resolved] Verify
Fix
{ J [Valid PIN]

[issue resolved]

Close
ticket
k © uml-diagrams.org

[Invalid PIM]

Display Menu

25 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Activity Diagram: Building Blocks

Minimal requirements

* An initial state (black circle)
« Afinal state (encircled black circle)
At least one action (rounded rectangle)

Final state
Initial state
Action
Transition
26 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

Activity Diagram: Building Blocks

Actions

* An executable unit
* In the context of the model not decomposable
 In a programming language such as a method call or a computation

Transactions

* Initial state and action each have only one outgoing transition
 Final state and action each have only one incoming transition

Action

[Action

H[Action

Action

27 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Activity Diagram: Building Blocks

Branching / Decisions based on conditions (1/3)

« Activity diagrams can also model branching or decisions within the activity
flow: Diamonds for representation

 Reminder (Java): if (Condition) { action(); }

Each path must be
labeled with a
condition

\ (L /

Action
[Condition] X /
O N\ 4

Condition is stated in
square brackets

[Condition
not satisfied]
Branching Junction
28 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

Activity Diagram: Building Blocks

Branching / Decisions based on conditions (2/3)

if (condition) {
actionl () ;

} else {
action2 () ;

[condition]

}

[else]

.

if (a==1) {
actionl ();

} else 1if (a==2) {
action2 () ;

} else {
}
[a==1]

" [else]

[a==2]
'IHHHHHI'

Jg

|

29 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Activity Diagram: Building Blocks

Branching / Decisions based on conditions (3/3)
Looping can be represented as well!

_[full])\ [not full
O,

[no ice cream %[ﬂnme ice cream left]

L
@et more iﬁ&i:rearD

30 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Activity Diagram: Examples

([
N\ ot full)
@<

[no ice cream left] A[mme ice cream left]

@et mare itecrearD

f>{ action 1 }

[condition]

[else]

\>{ action 2 }—/

Action 1

—®

e[
o
9[

Action 2

],
%

31 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

Activity Diagram: Building Blocks

Parallelization

« Parallelization is used to spilt one control flow in several ones
* Two actions are executed in parallel ...
 After execution they are merged together (aka synchronization)

 In Java that could be done via Threads (not covered during lecture)

Parallelization

Synchronization

\
°

Action 1

.

$[
$[

Action 2

%
%

@

32 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

Activity Diagram: Building Blocks

Swim lanes to assign actions to components / classes

Fulfillment . Customer Service Finance

TL

Fill Order Send
Invoice
Deliver Receive
Order Payment

S

Close |
Order
@®

33 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Activity Diagram: Example

Shopping trip to the bakery ©

Customer Sales Person

Enter Bakery Hail Customer

Place Order | Get order from
| shelf

[further order]
Pack order
Answer
question

[no further order]

@

Ask for further
orders

i

= Tell total price

Leave Bakery

34 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Activity Diagram Generation

Get activity diagram from textual description

T

Set upper limit to x

Root finding with the bisection method 7

Task: Find the square root of a given x. / [Set lower limit to OJ

Choose x as an upper limit and 0 as a lower limit. — | ¢

Calculate the mean value of upper and lower limit

and square this value T y \

If the result is within a given epsilon environment
(which can be set) to x, end the calculation \

If the result is bigger than x, set the mean value as [Square mean J
the new upper limit an repeat the calculation.—__| value
If the result is smaller than x, set the mean value as \ cnsi
-\’ Set lower limit
to mean value

[Calc. mean value]

[Result > (x+epsilon)]

~> (Set upper limit
to mean value

[else]

O

the new lower limit an repeat the calculation. /™|

ﬂ

Aachen, Germany | Cybernetics Lab IMA & IfU

35 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 | M ‘ Rm

Activity Diagram Usage

Get source code from activity diagram

?’

[Set upper limit to x}

mox]

] Set lower limitto 0 I

¢’////////////////,/
4 M N
[Calc. mean value J //

value

e |

[Result < (x-epsilon)] [Result > (x+epsilon)]

\# Set lower limit
to mean value

Set upper limit
to mean value

double squareRoot (double x,

double upper = x;

— double lower = 0;

double mv = 0;

{boolean traced = false;
_—»

do {

/////*vmv = (upper + lower) / 2;

double square = mV * mV;

;//’

e if (square > x + eps) {

upper = mV;
} else if (square < x - eps) {
lower = mV;

- } else {

traced = true;

} while (!traced);
return mV;

36 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

double eps)

UML Class Diagram

37 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Class Diagram: Introduction

Structure of an OO-software project

» Class diagrams visualize the static structure of object-oriented SW

* The structure of a source code can be represented by a class diagram
» Class diagram can be based on source code or

» Source code can be based on class diagram

Class diagrams reveal
* Classes and their
« Attributes (+visibilities)
« Methods (+visibilities)
» Relationship between classes, e.g. inheritance and dependencies

38 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Class Diagram: Examples

. Enrollmeant .
Student ! enrolied 1. Marks Received 1. n 1 Seminar
::g’a Get Average To Date Name ;
ress .
Phone Number rdered. FIECH Gt Final Mark E:;nslnar Number Session Manager
Email Address 0__.{° ered, } on wailing list 0. Csserld ; sting Msand : siing
Student Number Add Student -password : string FdeparimantMame | string
Average Mark ..* | Drop Student HoginStatus ¢ string Hoetlser()
Is Eligible To Enroll varifyLoaing| - bool
Get Seminars Taken Professor ryLoging gewq’a'tm‘;"m
Name instructs 1
Address a1
Phone NMumber "
Email Address Customer
Sal
S “custamerhame - siring Adminigirator
-address : string FadminMame ; string
-email - siring Femail ; sting
. Dy t
— R tupdateCatalog(] - bool epartmen
-creditcardinio ¢ string Fdepartmentid
0.* -shippinglnfa © string e
+register() Fdescrption
+kogin) +getCategoryinDepartmenti)
;"'“"p'“gc"“ +updateProfile)
[eartld ; int
lproductiD ; int 1 Shippinginfo 1
l-quantity @ int . Fshippingld : int
-dateAdded :int 0. FshippingType : string
+addCarlltem() FshippingCost «int
+deleteCartltem() Orders FshippingRegionld : int c“t‘?gﬁ‘n’
+updatequantity]) Cordand Tt +updateShippinginfal) -calegoryld ;int
+viewCartDetails() | dateCreated - string department|d Int
+checkout() ~dateShipped | string -categ_oryhlal_'ns string
¥ LcustomerMame : sirlng poescription : sfring
Lcustomerld ; string +gelProductsinCategory()
0.t -status : string OrderDetail 0.* [)
Lshippingld : string Cordend int 1
+placeCrder(} Fproductid : int
-productMame ; string 1
Fquantity : int
FunitCost @ fioat
l-subtotal : float Product
FralcPrice() Cpreductd int
LnamE | string
-description : string
. -price - int
0. HimageFileName : string
+displayProduct()
+getProductDetails()
39 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 | R“‘I‘H

Aachen, Germany | Cybernetics Lab IMA & IfU

Class Diagram: Building Blocks

protected: #

Element Notation Example/ Explanation

Class Name Car
Class with attributes - Car
and methods ame .

attributes speed: int

methods getSpeed() : int

setSpeed (speed : int): void

Visibility of attributes private: - Car
and methods public: +

- speed: int

+ getSpeed () : int
+ setSpeed (an speed:int):void

40 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

Class Diagram: Building Blocks

Class Name

access modifier :
+ = public /y-attrlbute:DataType

-=private ~p+Method(parameter:DataType):Return DataType
= protected

General class syntax

U

Part

-id: String
-name:String

+Part(id:String, name:String)
+getld():String
+getName():String
-setld(id:String):void
-setName(name:String):void

Concrete (remember lecture 4)

41 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Class Diagram: Building Blocks

Building blocks (relationships)

* The generalization is the “normal”
inheritance from OOP. The triangle is
attached to the superclass!

* The realization is the equivalent to
the implementation of an interface.

Generalization

Class 1

Realization

Class 1

Class 2

«interface»
Interfacel

42 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

Class Diagram: Building Blocks

Building blocks (generalization)

UniMember

- name:String

+ getName():void

Staff Student
- staffID:int - studentID:int
+ getStaffID():int + getStudentID():int

43 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Class Diagram: Building Blocks

Building blocks (generalization in code)

UniMember class UniMember {

- hame:String - private String name;

+ getName():void — |

> public void getName () {
System.out.println("I'‘m " + name);

}
}
Concrete implementation = behavior
Not part of class diagram!

44 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Class Diagram: Building Blocks

Building blocks (generalization in code)

UniMember

- name:String //////
+ getName():void

/ Student

class Student extends UniMember { - studentID:int
private int studentID;

: . + getStudentID():int
public 1nt getStudentID () {

return studentID;

}

45 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Class Diagram: Building Blocks

Building blocks (relationships)

The aggregation is a weak
dependency where instances of class 1
use instances of class 2. Class 1 and
class 2 can exist independently of each
other.

The composition is a strong
dependency where instances of class 1
consist of instances of class 2. The life
cycles of each class are coupled
together. If class 1 gets deleted class 2
gets deleted as well.

Aggregation

Class 1

*

Cardinality

<>/

-name

Composition\
*

Class 1

Class 2

¢

-name

Class 2

46

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Class Diagram: Building Blocks

Building blocks (cardinality)

Cardinality specifies the range of possible objects existing in a relationship between
two classes.

Cardinalities Meaning

0..1 Zero or one instances
(n..m indicates n to m instances)

0. or* no limited number of instances
1 number of instances (here 1)
1.* at least one instance

! Cardinalities larger than 1 are realized using Arrays, Lists etc.

a7 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Class Diagram: Building Blocks

Aggregation in code

1. public class Classl ({ Aggregation

2. private Class2 name; 1
3. Class 1 <> Class 2
4. public void setName (Class2 name) { -name
5. this.name = name;

6. }

7. public Class2 getName () {

8. return name;

9. }

10.

11. //.

12.}

| The deletion of the whole does not carry on to the parts.

48 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Class Diagram: Example

CollisionController

- MIN_DISTANCE TO OBSTACLE: int = 20 {readOnly}
- SPEED: int = 50 {readCnly}

+ setUltraSonicSensor(sensor: UltraSonicSensor): void
+ setMotor(motor: Motor): void
+ driveAvoidCollision(): void

1 - 5ensor

UltraSonicSensor

- measuredValue: int = 40

+ activate(): void
+ disable(): void
+ getValue(): int

1 - motor

Motor

- speed: int =40

+ setSpeed(speed: int): void
+ getSpeed(): int
+ stop(): void

49 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

Class Diagram: Building Blocks

Composition in code

| The deletion of the whole carries on to the parts.

1. public class Classl ({ Composition

2. private Class2 name; 1
3. Class 1

4, public Classl () { -name
5. name = new Class2() ;

6. }

7. '}

1. public class Classl {

2.

3. private Class2 name = new Class2();

4,

5. }

Class 2

50 Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |
Aachen, Germany | Cybernetics Lab IMA & IfU

