
Object-Oriented Programming In Mechatronic Systems

Summer School 2018

Module 6 – Introduction to UML

Aachen, Germany

Cybernetics Lab IMA & IfU

Faculty of Mechanical Engineering

RWTH Aachen University

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

2

Recap

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

3

Recap

Module 4 was about the more advanced concepts of OOP

• this and super

• Exceptions

• Packages

• Java API and

• Data structures (like ArrayList, …)

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

4

Recap: this – When an Object Refers to Itself

public class Rectangle {

private Point2D lowerLeft;

private Point2D upperRight;

…

public void setLowerLeft(Point2D lowerLeft) {

this.lowerLeft = lowerLeft;

}

public Point2D getLowerLeft() {

return lowerLeft;

}

…

}

this represents a reference (a pointer) to the current object

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

5

Recap: super – When an Object Refers to its Super-Class Parts

A Square is a special case of a rectangle, where the sides have equal length

• Square extends and specializes Rectangle

• To save the two points needed to describe a rectangle, we need to call the

constructor of Rectangle

• Use super to call the overridden method or constructor of a superclass

public class Square extends Rectangle {

…

public Square(Point2D lowerLeft, Point2D upperRight){

super(lowerLeft, upperRight);

if(this.upperRight.getX() – this.lowerLeft.getX()

!= this.upperRight.getY() – this.lowerLeft.getY())

{

throw new IllegalStateException();

}

}

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

6

Recap: Exception Handling

public class Application {

public static void main(String[] args) {

Rectangle r = new Rectangle(new Point2D(50,10), new

Point2D(20,40));

System.out.println("The area of r is: " +

r.calculateArea();

}

}

40

10 20

10

30 40 50 60

lowerLeft.getX() < upperRight.getX() &&

lowerLeft.getY() < upperRight.getY()

This would result in an illegal state!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

7

Recap: Exception Handling

public class Application {

public static void main(String[] args) {

try {

Rectangle r = new Rectangle(new Point2D(50,10), new

Point2D(20,40));

System.out.println("The area of r is: " +

r.calculateArea();

} catch (IllegalStateException e) {

System.err.println("The initialization of rectangle

failed. Reason: " + e.getMessage();

}

}

}

If the initialization fails (due to a created illegal state), an
IllegalStateException is thrown: Now, we can react accordingly, by catching

the Exception.

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

8

Recap: Exception Handling

The Catch or Specify Requirement

• Valid code must honor the Catch or Specify Requirement

• If code might throw certain exceptions, code must be enclosed by…

 … a try statement that catches the exception or

 … a method that is marked via the throws clause (telling the caller that the method

can throw such exceptions)

• Code that does not honor the requirement doesn’t compile!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

9

Recap: Exception Handling

Catching and Handling Exceptions

Three exception handler components: try, catch, and finally

try

{

statements that can throw exceptions

}

catch (exception-type identifier)

{

statements executed when exception is thrown

}

finally // not mandatory!

{

statements that are always executed

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

10

Recap: Packages

Definition

• A package is a grouping of related types (e.g. classes or interfaces)

• Make stuff easier to find and use

• … to avoid naming conflicts

• … to control access.

Usage

• Examples: java.util (for utilities) or javax.swing (for creating GUIs)

• We have to either import it by using the import keyword…

import java.util.ArrayList

• … or type in the full name of the class everywhere in our code!

• You can bundle your own code in packages: use the package statement

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

11

Recap: Wrapper Classes

Problem

• int, double, float, … are primitive data types and therefore not defined by

classes you cannot create an object of type int

• Often you have data structures that can hold objects of a specific type, but only

objects.

Solution: Wrapper Classes

• Java provides wrapper classes for each of the primitive data types.

• Wrapping can be done by compiler (compiler boxes primitive in its wrapper

class) and unboxes them if needed.

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

12

Recap: Java API and ArrayLists

Class java.util.ArrayList

• ArrayList extends AbstractList and implements the List interface

• Data structure to hold objects (e.g. class Integer or class Point)!

• Automatically manages its size.

• Provides convenient methods to remove, find and add objects to the list.

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

13

Recap: Java API and ArrayLists

ArrayList methods (Excerpt)

• void add(int index, Object element)

Inserts the specified element at the specified position index in this list.

• void add(Object element)

Inserts the specified element at the end of this list.

• void clear()

Removes all of the elements from the ArrayList.

• Object remove(int index)

Removes the element at the specified position in this list.

• int size()

Returns the number of elements in this list.

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

14

Unified Modeling Language (UML)
Modeling software before programming

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

15

Motivation

Motivation

• Your company is given the task of developing a software system…

• Let’s say a software for handling customer complaints!

• How would you proceed?

Would you just start programming?

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

16

Motivation

Planning upfront might be a good idea, but how do you communicate

your ideas, plans and needs?

You need a common ground for communication, some kind of a

language: Unfortunately, a natural language cannot succeed in this

task, because it is ambiguous and complex!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

17

Standardization and Visual Modeling

We need a standardized modeling notation, that…

• … must have well-defined semantics,

• … must be well suited for representing aspects of a system and

• … must be well-understood among project participants (which can be dozens of

peoples)

It would be great to have some visual modeling, because…

• … models are visual: They are potentially a more efficient and effective form of

communication than prose,

• … models are more precise: It is hard to recognize missing elements in written

forms of requirements, but with a visual model it is more noticeable,

• … models can represent ideas from different angles / perspectives

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

18

Unified Modeling Language

Unified Modeling Language (UML) is a visual modeling language

Basic idea of UML

To provide the stakeholders of an object-oriented software

development process with a common and standardized

development and analysis tool.

• Industry Standard for specifying, visualizing, constructing, and documenting the

artifacts of software systems

• UML uses mostly graphical notations to express the OO analysis and design of

software projects

• UML simplifies the complex process of software design

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

19

Unified Modeling Language

Why we use UML?

• Use graphical notations (remember visual modeling): more clearly than

natural language (imprecise) and code (too detailed)

• Help acquire an overall view (different perspective) of a system

• UML is independent on any programming language or technology

• UML moves us from fragmentation to standardization

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

20

Unified Modeling Language

UML is standardized

• Current Version: 2.5 (May 2015)

• ISO/IEC DIS 19505-1

• ISO/IEC DIS 19505-2

• Constantly further developed: http://www.omg.org/spec/UML/Current

• UML defines different types of diagrams for modeling

Two main diagram types

• Structure diagrams

• Behaviour diagrams

We are focusing on four

diagram types:

http://www.omg.org/spec/UML/Current

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

21

UML Class Diagram

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

22

UML Activity Diagram

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

23

UML Activity Diagram

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

24

Activity Diagram

Bringing a system to life, i.e. describing its dynamic behavior

• Previously, we have met component diagrams

• They describe the (static) structure of a system

• … and not the flow of events!

Different dynamic aspects of a system can be UML-modeled

• Interaction between components: sequence and communication diagram

• The process of state changes: state diagram

• Processes and algorithms: activity diagram

• Activity diagrams are similar to flowcharts

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

25

Activity Diagram: Examples

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

26

Activity Diagram: Building Blocks

Minimal requirements

• An initial state (black circle)

• A final state (encircled black circle)

• At least one action (rounded rectangle)

Action

Initial state
Final state

Transition

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

27

Activity Diagram: Building Blocks

Actions

• An executable unit

• In the context of the model not decomposable

• In a programming language such as a method call or a computation

Transactions

• Initial state and action each have only one outgoing transition

• Final state and action each have only one incoming transition

Action Action

Action

Action

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

28

Action
[Condition]

[Condition
not satisfied]

Branching Junction

Condition is stated in
square brackets

Each path must be
labeled with a

condition

Activity Diagram: Building Blocks

Branching / Decisions based on conditions (1/3)

• Activity diagrams can also model branching or decisions within the activity

flow: Diamonds for representation

• Reminder (Java): if (Condition) { action(); }

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

29

Activity Diagram: Building Blocks

Branching / Decisions based on conditions (2/3)

if (condition){

action1();

} else {

action2();

}

if (a==1) {

action1();

} else if (a==2) {

action2();

} else {

}

Aktion 1

[Bedingung]

[else]

Aktion 2

action 1

action 2

[condition]

Aktion 1

[a==1]

[a==2]

Aktion 2

[sonst]

action 1

action 2

[else]

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

30

Activity Diagram: Building Blocks

Branching / Decisions based on conditions (3/3)

Looping can be represented as well!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

31

Activity Diagram: Examples

Aktion 1

[Bedingung]

[else]

Aktion 2

action 1

action 2

[condition]

Action 1

Action 2

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

32

Activity Diagram: Building Blocks

Parallelization

• Parallelization is used to spilt one control flow in several ones

• Two actions are executed in parallel …

• After execution they are merged together (aka synchronization)

• In Java that could be done via Threads (not covered during lecture)

Parallelization
Synchronization

Action 1

Action 2

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

33

Activity Diagram: Building Blocks

Swim lanes to assign actions to components / classes

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

34

Activity Diagram: Example

Shopping trip to the bakery

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

35

Activity Diagram Generation

Get activity diagram from textual description

Root finding with the bisection method

Task: Find the square root of a given x.

Choose x as an upper limit and 0 as a lower limit.

Calculate the mean value of upper and lower limit
and square this value

If the result is within a given epsilon environment
(which can be set) to x, end the calculation

If the result is bigger than x, set the mean value as
the new upper limit an repeat the calculation.

If the result is smaller than x, set the mean value as
the new lower limit an repeat the calculation.

Setze Obergrenze auf x

Setze Untergrenze auf 0

Bestimme Mittelwert aus

Ober-/Untergrenze

Quadriere Mittelwert

Setze Untergrenze

auf Mittelwert

Setze Obergrenze

auf Mittelwert

[sonst]

[Resultat>(x+Epsilon)][Resultat<(x-Epsilon)]

Set upper limit to x

Set lower limit to 0

Calc. mean value

Square mean

value

[Result < (x-epsilon)] [Result > (x+epsilon)]

Set lower limit

to mean value

Set upper limit

to mean value

[else]

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

36

Activity Diagram Usage

Get source code from activity diagram

double squareRoot(double x, double eps) {

double upper = x;

double lower = 0;

double mV = 0;

boolean traced = false;

do {

mV = (upper + lower) / 2;

double square = mV * mV;

if (square > x + eps) {

upper = mV;

} else if (square < x - eps) {

lower = mV;

} else {

traced = true;

}

} while (!traced);

return mV;

}

Setze Obergrenze auf x

Setze Untergrenze auf 0

Bestimme Mittelwert aus

Ober-/Untergrenze

Quadriere Mittelwert

Setze Untergrenze

auf Mittelwert

Setze Obergrenze

auf Mittelwert

[sonst]

[Resultat>(x+Epsilon)][Resultat<(x-Epsilon)]

Set upper limit to x

Set lower limit to 0

Calc. mean value

Square mean

value

[Result < (x-epsilon)] [Result > (x+epsilon)]

Set lower limit

to mean value

Set upper limit

to mean value

[else]

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

37

UML Class Diagram

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

38

Class Diagram: Introduction

Structure of an OO-software project

• Class diagrams visualize the static structure of object-oriented SW

• The structure of a source code can be represented by a class diagram

• Class diagram can be based on source code or

• Source code can be based on class diagram

Class diagrams reveal

• Classes and their

• Attributes (+visibilities)

• Methods (+visibilities)

• Relationship between classes, e.g. inheritance and dependencies

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

39

Class Diagram: Examples

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

40

Class Diagram: Building Blocks

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

41

Class Diagram: Building Blocks

Part

-id:String

-name:String

+Part(id:String, name:String)

+getId():String

+getName():String

-setId(id:String):void

-setName(name:String):void

Concrete (remember lecture 4)

Class Name

-attribute:DataType

+Method(parameter:DataType):Return DataType

General class syntax

access modifier
+ = public

- = private

= protected

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

42

Class Diagram: Building Blocks

Building blocks (relationships)

• The generalization is the “normal”

inheritance from OOP. The triangle is

attached to the superclass!

• The realization is the equivalent to

the implementation of an interface.

Generalization

Class 1 Class 2

Realization

Class 1
«interface»

Interface1

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

43

Class Diagram: Building Blocks

Building blocks (generalization)

Staff

- staffID:int

+ getStaffID():int

Student

- studentID:int

+ getStudentID():int

UniMember

- name:String

+ getName():void

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

44

Class Diagram: Building Blocks

Building blocks (generalization in code)

UniMember

- name:String

+ getName():void

class UniMember{

private String name;

public void getName(){

System.out.println("I‘m " + name);

}

}

Concrete implementation = behavior

Not part of class diagram!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

45

Class Diagram: Building Blocks

Building blocks (generalization in code)

Student

- studentID:int

+ getStudentID():int

UniMember

- name:String

+ getName():void

class Student extends UniMember {

private int studentID;

public int getStudentID(){

return studentID;

}

}

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

46

Class Diagram: Building Blocks

Building blocks (relationships)

• The aggregation is a weak

dependency where instances of class 1

use instances of class 2. Class 1 and

class 2 can exist independently of each

other.

• The composition is a strong

dependency where instances of class 1

consist of instances of class 2. The life

cycles of each class are coupled

together. If class 1 gets deleted class 2

gets deleted as well.

Aggregation

Class 1 Class 2
*

-name

Composition

Class 1 Class 2
*

-name

Cardinality

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

47

Class Diagram: Building Blocks

Building blocks (cardinality)

Cardinality specifies the range of possible objects existing in a relationship between

two classes.

Cardinalities Meaning

0..1 zero or one instances

(n..m indicates n to m instances)

0..* or * no limited number of instances

1 number of instances (here 1)

1..* at least one instance

Cardinalities larger than 1 are realized using Arrays, Lists etc.!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

48

Class Diagram: Building Blocks

Aggregation in code

1. public class Class1 {

2. private Class2 name;

3.

4. public void setName(Class2 name) {

5. this.name = name;

6. }

7. public Class2 getName() {

8. return name;

9. }

10.

11. //…

12.}

Aggregation

Class 1 Class 2
1

-name

The deletion of the whole does not carry on to the parts.!

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

49

Class Diagram: Example

Object-Oriented Programming In Mechatronic Systems | Summer School 2018 |

Aachen, Germany | Cybernetics Lab IMA & IfU

50

Class Diagram: Building Blocks

Composition in code

1. public class Class1 {

2. private Class2 name;

3.

4. public Class1() {

5. name = new Class2();

6. }

7. }

Composition

Class 1 Class 2
1

-name

The deletion of the whole carries on to the parts.!

1. public class Class1 {

2.

3. private Class2 name = new Class2();

4.

5. }

Thank you very much!

